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ABSTRACT 

The author has already presented some papers [1, 2] 
which allow studying cable systems by means of the 
multiconductor cell analysis (MCA). This method 
considers the cable system in its real asymmetry without 
simplified and approximated hypotheses. The 
multiconductor matrix procedure based on the use of 
admittance matrices, which account for the line cells (with 
earth return currents), different types of shield bonding, 
possible multiple circuits (single and double circuits or 
more), allows predicting the steady-state regime of any 
cable system. In previous papers, these matrix algorithms 
had been presented with reference to a short extra-high 
voltage (EHV) double-circuit cross-bonded (CB) 
underground cable (UGC) system. Since the cable link 
was short, the shunt reactive compensation was not used 
and consequently not considered. In this paper the 
procedure is generalized in order to take into account 
three single-phase (or also one three-phase) reactors 
installed at the cable ends or also at intermediate 
locations. 
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INTRODUCTION 

Insulated cables constitute complex cases of 
multiconductor systems which cannot be studied in detail 
by means of a simplified single-phase equivalent circuit. In 
the electrical system research, the multiconductor theory 
is used in several situations e.g. analysis of 
electromagnetic interferences between systems of 
different kind. Obviously, the modelling used for the 
abovementioned electromagnetic compatibility studies 
cannot be applied to the multiconductor analysis inside a 
unique power system where besides the overhead lines 
there are also UGCs with their metallic shields. Hence it is 
easy to understand how, considering the physical reality 
of the power networks, it can be questionable to assume 
purely three-phase configurations and perfectly 
symmetrical ones, so to use the three sequence 
modelling; in many cases, the multiconductor analysis 
becomes necessary, since it allows one to achieve great 
precision results so offering a powerful tool in order to 
validate approximated and simplified computation 
methods. 

BRIEF RECALLS TO THE 
MULTICONDUCTOR CELL ANALYSIS  

The whole exposition of the general procedure can be 
found in [1, 2] or, with a more didactical approach, in the 
book [3]. In the following only a brief synopsis is provided. 
Let us consider three single-core cables (3 phases and 3 
shields for a total of 6 conductors parallel to themselves 
and to the ground surface where earth return current 
flows) with total length d (see Fig. 1) and a stretch of 
length ∆

l
 between the two sections S and R composed of 

6 conductors; if d>>∆
l
, the border effects can be 

neglected. In such a case, the treatment (given by Carson 
[4], Pollaczek [5]), shows (if the transversal couplings due 
to the phase-to-shield and shield-to-earth conductive-
capacitive susceptances are treated separately) how the 
longitudinal ohmic-inductive self impedances zi,i and 
mutual impedances zi,j of n conductors (n=6 in the present 
case) can be computed, considering also the 
electromagnetic field inside the earth; once zi,i and zi,j have 
been computed, it is possible to form the matrix ZL (6×6) 
and to characterize, by means of the relation (1), the 
steady state regime of longitudinal block L of Fig. 2 
(where the voltage column vectors uS, uR and the current 
column vectors iS, iSL, iST, iR, iRL, iRT are shown):  
 
uS-uR= ZL iSL ,                                       (1) 

 
and by considering the obvious relation (2) 
 
iRL ≡ – iSL                                                                                                             (2) 
 
it yields, (being ZL not singular)  
 
ZL

-1uS  -ZL
-1 uR  =iSL                                                         (3) 

-ZL
-1uS+ZL

-1uR    =iRL        .                                               (4) 
 
Hence the following matrix relation (5), where YL∆∆∆∆ (12×12) 
regards the block L circuit formed by the 6 longitudinal 
links, can be written:  
 

                                    (5) 
 
In particular, it is important to mark the directions of the 
currents in correspondence to S and R (both towards the 
circuital block) since the study will be developed by 
means of models identified by nodal admittance matrices.  
Being ∆

l
 sufficiently small, it is possible to lump the 

uniformly distributed shunt admittances at both ends of 
the cell (transverse blocks TS and TR whose pertaining 
matrices are shown in [1-3]) and to consider separately 
the longitudinal elements in the block L. 

 
Fig. 1: Multiconductor system with indication of a cell 
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