
Return to Session 

 

THERMAL TRANSIENT ANALYSIS OF UNDERGROUND CABLES 

Jan DESMET, Hogeschool West-Vlaanderen, dept. PIH, Kortrijk (Belgium), jan.desmet@howest.be 
Dries PUTMAN, Hogeschool West-Vlaanderen, dept. PIH, Kortrijk (Belgium), lemcko@howest.be 
Greet VANALME, Hogeschool West-Vlaanderen, dept. PIH, Kortrijk (Belgium), greet.vanalme@howest.be 
Ronnie BELMANS, K.U.Leuven, dept. ESAT/ELEN, Leuven (Belgium), ronnie.belmans@esat.kuleuven.be 
Eric CLOET, Elia, Brussel (Belgium), eric.cloet@elia.be 

 

ABSTRACT 

For companies active in distribution or transport of electrical 
energy, it is important to know the maximum short time 
ampacity of underground high voltage cables.  With the 
knowledge of the transient thermal behaviour of 
underground cables, the energy companies should be able 
to operate temporarily in current overload conditions, 
without exceeding the maximum cable operating 
temperature. Existing cable standards describe correction 
factors for different conditions in steady state, but do not 
deal with transient behaviour. 
The proposed research analyses the temperature of 
underground cables as a function of the initial load 
conditions, magnitude and duration of the overload, taking 
into account both cable and soil parameters and cable 
configuration.  A software is developed for transmission 
system operators in order to simulate thermal transient 
behaviour of underground cables in a quick and easy way 
with respect to the boundary conditions.  
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INTRODUCTION 

The analysis starts with the description of the simplified 
model that is used in the simulation software for the 
calculation of transient temperatures of underground cables. 
Subsequently the test set-up built for the validation of the 
software, is presented, as well as the comparison of 
simulation and experimental results. Finally some 
conclusions are drawn. 

SOFTWARE MODEL  

In the software model, only the thermal conduction is 
considered.  Since convection and radiation are neglected, 
this simplification will lead to worst case results.  Also other 
effects, such as underground water flows who reduce the 
cable temperature are neglected. 

 

Figure 1: Model for simulating cable temperatures  

The analysis of the thermal behaviour of the underground 
cables is made on the base of a distributed equivalent 
electrical network (Figure 1) consisting of a current source, 

resistors and capacitors, representing respectively the heat 
generation in the cable, the thermal resistances and thermal 
capacitances of the different cable and earth layers. 
The heat generation in the cable due to Joule power losses 
R.I², where R represents the electrical cable resistance 
(temperature dependent) and I the load current. For the 
determination of the thermal resistances and capacitances, 
the knowledge of respectively the thermal conductivity and 
capacity of the different cable and earth layers is required, 
as well as the layer dimensions. The temperatures of the 
layers are calculated through the voltages in the equivalent 
electrical network. 

Equations for temperature calculations  
Steady state conditions 
The temperature Ti in node i (Figure 1) is given by: 

 ∑
=

=
n

ik
ki RQT  [1] 

In particular, the conductor temperature T1 equals: 
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where Ti [K] the temperature in node i, Q [W/m] the heat 
generation per meter cable and Ri [m.K/W] the thermal 
resistance of layer i (between nodes i and i+1). 
 
Transient conditions 
The relation between the heat flux and the temperature 
change per time in a volume with thermal capacity Ci is 
given by: 
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where i and j are indices for place and time respectively, 
j

CiQ [W/m] the heat flux in volume i at time j, j
iT [K] the 

temperature in node i at time j, Ci [J/(m.K)] the thermal 
capacity of volume i, and ∆t [s] the time step.  The 
combination of [3] and the heat flux balance in each node 
results in [4]-[6].  
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with: i = 1, 2, 3, …, n 
and n the number of considered layers    
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