

Jicable-HVDC'17 - YRC08

1/1

Title

Finite element simulation for HVDC performance tests parameters setting

Version of the document		V1	Date	01-05-2017		
Proposed topic ¹	Progress on the understanding of physical phenomena and on materials for use in HVDC					

Author's information — (Main author in the first row)						
Name	Company	Country	e-mail	Direct phone		
Basil Salamé	Nexans	France	basil.salame@nexans.com	0437372202		
Quentin Eyssautier	Nexans	France	quentin.eyssautier@nexans.com	0391912560		
Adrien Charmetant	Nexans	France	adrien.charmetant@nexans.com	0437372186		

SUMMARY

It is common to cover HVDC cables by insulating foam during performance tests to control boundary conditions. It permits to reach the tests specifications and verify the cable performance in real operating conditions. Yet the tests stand up to one year and undergo high ambient temperature variations which complicate their parameters setting.

Finite element simulation of a HVDC test loop allows determining the optimal foam thicknesses that represent the real operating conditions of the circuit. Moreover it permits to calculate for each thickness the current intensity needed to reach the test specifications depending on the temperature variation over the year.

In this paper we present the simulation of the thermoelectric behavior of a HVDC loop in a load cycle and the parameters setting that allow meeting the test requirements.