

WETS D'15 Workshop

Organization: Jicable and Prospective 2100 Palais des Congrès de Versailles, France Thursday, 25 June 2015

PD Diagnostics on MV cables

Rene Hummel

PD detection

PD measurement

PD localization

types of testing

Introduction – what are partial discharges?

How to measure?

localization:

- **TDR time domain reflectometry**
- sTDR statistical TDR

overview of technologies in the market

What is partial discharge ?

> Partial discharge (PD) is a localized dielectric breakdown of a small portion of a solid or liquid electrical insulation system under high voltage stress.

> Definition from IEC 60270 Specification:

Localized electrical discharge that only partially bridges the insulation between conductors and which can or cannot occur adjacent to a conductor.

What are partial discharges?

Partial discharge:

- > Local electrical stress in the insulation or on the surface of the insulation
- > Always generates electromagnetic signals
- > Often accompanied by an emission of sound, light, heat and chemical reactions

Breakdown of cable and termination

photo: IPH Berlin

Electrical treeing in PE

photo: IPH Berlin

video: IPH Berlin

How to measure?

Charge – How to measure?

> Time Domain Integration $q = \int_{t_1}^{t_2} i(t)dt = \frac{1}{R} \int_{t_1}^{t_2} u(t)dt$

Analog PD measurement systems

"Digital" PD measurement systems

"Digital PD measurement system with digital filtering

Types of PD

- > Internal PD
 - > Void discharges, "electrical treeing"

> External PD

- > Corona
- > Surface discharges

External PD

Surface discharge

Corona discharge

Internal PD

PD classification

Semicon layer protrusion (stress concentration at the tip)

Void (field strength doubling)

Phase resolved partial discharge PRPD

PRPD correlation between PD pulses and voltage phase PD nature might be identified

Phase resolved partial discharge – PRPD

> How is a PRPD created?

Further ways of PD analysis – Trend

PD repetition rate vs. time

Applied voltage vs. time

PD repetition rate vs. applied voltage

Further ways of PD analysis – 3CFRD (3 Center Frequency Ratio Diagram)

> Pulse Shape Analysis: 3CFRD or Time/Frequency map

Influence of inverse gating on external disturbances

External disturbance

Localization

TDR – Time domain reflectometry

- > A single PD pulse on an expanded test objects (cable) causes traveling waves in both directions
- > Pulses reaching the far cable end will be reflected
- > The reflected pulse will also be measured at the near end
- > The time delay of these 2 pulses depends on the PD fault position

TDR Curves for calibration and for PD

- > Calibration
 - > equal distances between echos (partial reflections from joints possible)

> PD

> typically 2 different time distances

Calculation of fault position

,

PD fault position from

>

Far End
$$l_{fault} = v_{PD} \cdot \frac{\Delta t}{2}$$

> Near End
$$l_{fault} = L - v_{PD} \cdot \frac{\Delta t}{2}$$

PD propagation speed

If v is unknown it can be found during calibration

- > if cable length is known
- > if only a single type of cable is tested

Travelling speeds and capacities in specific cable types

Cable type	travelling speed in m/μs	Typical capacity in nF/km For conductor cross sections in mm ² :						
		120	240	500	630	1200	1600	2500
XLPE 10kV	154-160	350	450	610	630	-	-	-
XLPE 20kV	164-170	240	300	400	-	-	-	-
XLPE 30kV	170-176	160	210	280	-	-	-	-
XLPE 60kV	174-176	-	-	-	236	-	-	-
XLPE 110kV	174-176	-	121	163	177	271	301	378
XLPE 150kV	~181	-	-	-	-	225	-	-
XLPE 220kV		-	106	143	155	236	260	294
XLPE 400kV		-	-	-	119	171	188	226
EPR 10kV	130-134	~300	500	-	-	-	-	-

OMICRON Academy

STDR – Statistical time domain reflectometry

- > A single PD pulse on an expanded test objects (cable) causes traveling waves in both directions
- > Pulses will be reflected in the far cable end but partly also on every joint

Assumption – Joints: 80% signal transmission; 20% signal reflection

STDR – Statistical time domain reflectometry

- > Specific impulses are correlated to all measured impulses
- > The results of this correlation
 - > time difference between impulses
 - > relative amplitude of the correlated impulse
 - are drawn into the STDR histogram

OMICRON Academy

overview of technologies in the market

technologies in the market

Cosinus rectangle - CosRec

CosRec – Zoom on falling slope

CosRec – Zoom on falling slope

CosRec – PD only in slopes

OMICRON Academy

source: http://hvgrid-tech.com

standards

IEC60885-3

IEC 60840

IEC 60502-2

IEEE 400 documents (.1, .2, .3, .4, .5)

CENELEC HD620 S1

CIGRE guides

