

WETS D'15 Workshop

Organization: Jicable and Prospective 2100 Palais des Congrès de Versailles, France Thursday, 25 June 2015

Part 3 - Diagnosis for ageing of and residual life assessment

ERDF DT – Pôle réseau et EDF R&D - LME

THE 4 TOPICS OF WETS D'15

Prepared By: Roger TAMBRUN ERDF and Philippe BARATON R&D

General data of the network

Roger TAMBRUN + Guillaume PELTON: ERDF & Yves BRUMENT: R&D

Technologies

Roger TAMBRUN: ERDF & Yves BRUMENT + Christophe TOURCHER: R&D

- 1 Câbles
- 2 Accessories
- Diagnosis of ageing and estimation of the residual life

Roger TAMBRUN : **ERDF** + Thierry ESPILIT + H. DIGARD : **R&D**

Renewal of the distribution networks

Gauthier BEAUZEMONT : **ERDF &** Emanuela BUCCAFURRI + Adrien RESMOND : **R&D**

3-1 -1 Diagnosis of ageing and estimation of the residual life

What diagnosis methods, off line: by T.ESPILIT

Deployed since early 2007 for ERDF

21 test vans for 23 geographical areas

Automatic calculation criteria

- 3 levels risk evaluation: low, moderate, high
- III Tan delta criteria:
 - Mean Tan delta @ 0.5 Uo
 - Voltage dependence of Tan delta
 - III Time stability of Tan delta @ 1.5 Uo (std dev)
 - Set to identify weak joint problems (water penetration)
 - Adapted for paper insulation and XLPE (except very degraded cables)

Criteria for PD :

- Inception at nominal voltage or lower
- Inception under 1.5 Uo and remaining at Uo
- PD distribution along cable length (PD Map)
- III Mainly for ranking
- |||| Evolution vs time (Off-line measurements)
- According to the actual knowledge rules in complex distribution systems

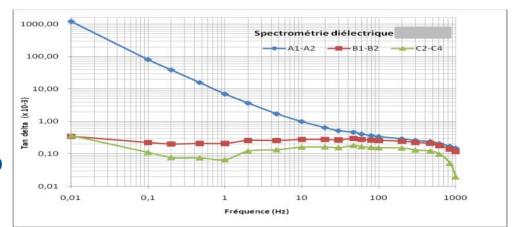
	▼ CALCULÉ ▼		▼	RI	REPORT RÉSULTATS DE MESURES ▼				▼ CALCULÉ ▼		
						Mesure	s				
				6 K¥	12 KV	18 KV	K¥	tension de claquage	Atg&%/AU	Ecart type%	Risque électrique
Tangente Delta	Tg sain		Tg X1E-3	17,2	18	18,6					
	2,69	Phi	C(nF) à 12 KV			écart type (X1E-3) à 18 KV			0,68%	0,47%	Risque faible
				263 nF 0,087							
	w	Ph2	Tg X1E-3	19 C(nF) à 12	20,8	21,3	écart type à 18 I	/ 1	1.01%	0,04%	Risque faible
	Tg critique	- FRZ		261 nF	N.T		n nns	.,	1,01/8		
	19,2	Ph3	Tq X1E-3	20.2	21.6	23	.,				
			C(nF) à 12 KV			écart type à 18 K¥			1,16%	0,28%	Risque modér
				265 nF				0,065			
	Phase		Localis	ation	câble/ accessoire	U apparition	Niveau Max à 12 KV	Niveau Max à 18 KY	Nombre de DP		Risque
	Ph 1		115 m.	145 m.	Câble papier	6 KV	2100 pC	6100 pC	Elevé		Risque éleve
	Ph 1		\$20 m.		Câble papier	12 KV	2100 pC	3000 pC	Faible		Risque modé
	Ph 1		40 m.	440 m.	Câble papier	18 KV		2100 pC	Elevé		Risque modé
Décharges	Ph 2		420 m.		Câble papier	6 KV	2800 pC	2800 pC	Elevé		Risque éleve
Partielles	Ph 2		110 m.	160 m.	Câble papier	12 KV	3000 pC	3400 pC	Elevé		
	Ph 2		50 m.	590 m.	Câble papier	12 KV	2000 pC	2200 pC	Faible		Risque faible
	Ph 3		\$20 m.		Câble papier	6 KV	2200 pC	2200 pC	Elevé		Risque élev
	Ph 3		105 m.	160 m.	Câble papier	12 KV	3200 pC	3400 pC	Elevé		Risque éleve
	Ph 3		588 m.		accessoire	18 KV		2700 pC	Faible		Risque faible
	Ph 3		40 m.	680 m.	Câble papier	18 KV	950 pC	950 pC	Elevé		Risque modé

3-1 -1 Diagnosis of ageing and estimation of the residual life

What diagnosis methods, off line: by T.ESPILIT

Experience Feedback Main Results

- III Automatic calculation
 - Good for low risk and high risk situations
 - Intermediate risk situations are problematic
 - IIII Threshold effect (e.g. values close to red level)
 - Too many cases in same population ("rather good" to "rather bad")
 - III Need for better discrimination for accurate ranking
 - III Need for better precision for extruded cables
- Organisation
 - IIII Need to provide appropriate training (PD measurement interpretation)
 - IIII Need to facilitate measurement data input for automatic calculation
 - Need to encourage systematical PD measurement in order to improve overall assessment
- | Equipment
 - IIII Need to improve automatic PD location/detection

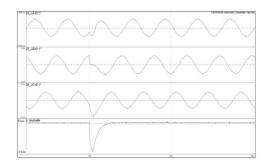

3-1 -1 Diagnosis of ageing and estimation of the residual life

ÉLECTRICITÉ RÉSEAU DISTRIBUTION FRANCI

What diagnosis methods, off line: by T.ESPILIT

Better characterization of degraded cables, e.g. by using enhanced diagnostic features

- Dielectric spectroscopy
 - Low frequency : off-line criteria
 - water penetration
 - temperature sensibility
 - High frequency : more accurate PD propagation features:
 - Off-line PD measurement
 - On-line location
 - Tan delta @ 0,1 Hz
 - Voltage dependence
 - Time stability



3-1- 2 Diagnosis of ageing and estimation of the residual life

What diagnosis methods, on line: by TESPILIT - H. DIGARD


☐ Diagnosis methods

- Partial Discharges
- Transient : self extinguishing faults
- Faults location

☐ Difficulties - Main challenges

- Identify specific knowledge rules for trend and behavior before failure versus time
- Accurate location in a complex network with limited number of measurement points (typically one at the substation):

