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Analysis of an array of wires in a low-frequency time-harmonic magnetic field 
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ABSTRACT 
Wired layers are often encountered in the cable industry, 
as in the armoring of three-core submarine power cables 
for off-shore wind farms. In this application, an array of steel 
wires is subjected to the time-harmonic magnetic field 
generated by balanced three phase currents. As wires are 
made of both conductive and magnetic material, induced 
currents and hysteresis must be accurately modelled in 
order to design optimized and cost-effective connections. 
Approaching this problem with realistic finite-element 
models is computationally expensive. We propose here a 
Method-of-Moments formulation where the wires are 
treated as 1-D structures. 
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INTRODUCTION 
In electrical engineering there are many applications in 
which one has to compute low frequency AC or DC 
magnetic fields and related quantities in the presence of 
many magnetic and/or conductive wires. An example can 
be found in high voltage submarine cables, which are 
typically used to connect the off-shore hub to other hubs or 
to the mainland power network. The armour of these kind 
of AC power cables is composed by many iron wires. The 
computation of the magnetic field inside and outside the 
shield is required. Hysteresis and eddy current phenomena 
are to be taken into account. 

When analyzing this problem by the Finite Element Method 
(FEM), one has to discretize the wires into fine elements in 
order to consider these effects. Moreover, the FEM 
requires to discretize not only the magnetic and/or 
conductive wires, but also the air which surrounds them, 
and to introduce an artificial boundary to the computational 
domain. For inherently 3D geometries that cannot be 
reduced to 2D, this leads to numerical models with a large 
number of degrees of freedom, whose solution is very 
demanding in terms of both memory and computation time. 
As a result, any analysis that requires many simulation 
runs, such as sensitivity analysis or design optimization, 
can become unfeasible even using state-of-the-art 
commercial electromagnetic simulation software. 

This paper proposes an alternative approach, based on the 
Magnetostatic Moment Method [1]. The advantages of this 
method are that only the magnetic material parts are 
discretized, and there is no need either to discretize the air 
domain, or to introduce fictitious computational boundaries 
and associated boundary conditions. 

 

MAGNETOSTATIC FORMULATION 
We consider the equations of magnetostatics [5]:   

∇ × 𝐇𝐇 = 𝐉𝐉𝑆𝑆, (1a) 

∇ ⋅ 𝐁𝐁 = 0,  (1b) 

where 𝐉𝐉𝑆𝑆 is a known current distribution. We partition the 
physical space into two regions: a region Ω𝑀𝑀 occupied by a 
magnetic material with relative permeability 𝜇𝜇𝑟𝑟 and a region 
Ω0 occupied by a material with relative permeability 1, e.g. 
air. The constitutive relation relating 𝐁𝐁 and 𝐇𝐇 can be written 
as 

𝐁𝐁(𝐱𝐱) = �𝜇𝜇0𝜇𝜇𝑟𝑟𝐇𝐇(𝐱𝐱), 𝐱𝐱 ∈ Ω𝑀𝑀,
𝜇𝜇0𝐇𝐇(𝐱𝐱), 𝐱𝐱 ∈ Ω0.  (2) 

We also consider the magnetization vector  

𝐌𝐌 = 𝐁𝐁
𝜇𝜇0
− 𝐇𝐇. (3) 

Inserting (2) into (3), and defining 𝛼𝛼 = 1 − 1
𝜇𝜇𝑟𝑟

 it can be seen 
that  

𝐌𝐌(𝐱𝐱) = �
𝛼𝛼
𝜇𝜇0
𝐁𝐁(𝐱𝐱), 𝐱𝐱 ∈ Ω𝑀𝑀,
𝟎𝟎, 𝐱𝐱 ∈ Ω0.

 (4) 

Relation (4) shows that 𝐌𝐌 vanishes outside the magnetic 
domain Ω𝑀𝑀. Therefore, if we manage to write an equation 
for the magnetization, only the quantities inside Ω𝑀𝑀 need to 
be considered as unknowns of the problem. This is clearly 
advantageous for certain geometrical configurations of Ω𝑀𝑀, 
such as when Ω𝑀𝑀 is composed of thin wires. 

With this aim in mind, following [6], we now proceed to 
derive an equation for the magnetization which is valid in 
the magnetostatic regime. By using (3) inside (1a), the 
equations of magnetostatics (1a) and (1b) can be rewritten 
in terms of 𝐁𝐁 and 𝐌𝐌 

∇ × 𝐁𝐁 = 𝜇𝜇0[𝐉𝐉𝑆𝑆 + ∇ × 𝐌𝐌], (5a) 

∇ ⋅ 𝐁𝐁 = 0.  (5b) 

It is useful to split the magnetic field 𝐁𝐁 into two terms  

𝐁𝐁 = 𝐁𝐁𝑆𝑆 + 𝐁𝐁𝑀𝑀. (6) 

The first term 𝐁𝐁𝑆𝑆 is directly the result of the current source 
𝐉𝐉𝑆𝑆 

∇ × 𝐁𝐁𝑆𝑆 = 𝜇𝜇0𝐉𝐉𝑆𝑆, (7a) 

∇ ⋅ 𝐁𝐁𝑆𝑆 = 0. (7b) 

The second term 𝐁𝐁𝑀𝑀 is due to magnetization 𝐌𝐌 induced in 
the material   

∇ × 𝐁𝐁𝑀𝑀 = 𝜇𝜇0∇ × 𝐌𝐌, (8a) 

∇ ⋅ 𝐁𝐁𝑀𝑀 = 0. (8b) 
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