
E2.5 9th International Conference on Insulated Power Cables E2.5 

 Jicable'15 - Versailles 21-25 June, 2015 1/6 

Accurate analytic formula for calculation of losses in three-core 
submarine cables 

Marius HATLO , Espen OLSEN, Ronny STØLAN;  Nexans AS, Norway, marius.hatlo@nexans.com, 
epsen.olsen@nexans.com, ronny.stolan@nexans.com 

Johan KARLSTRAND ; JK Cablegrid Consulting AB, Sweden, karlstrand@cablegrid.com 

 
 
ABSTRACT 

Accurate calculation of cable losses is crucial to design 
optimised and cost effective cable connections. However, 
for three core submarine cables, a standard calculation 
method is not available, and the commonly used rating 
method described in IEC 60287 substantially 
overestimates the armour losses. In this paper an 
analytical model to calculate both the sheath losses and 
armour losses of three-core submarine cables is 
presented, and compared with 2D and 3D Finite Element 
calculations and measurements on three different three-
core cables.   

The model consistently accounts for the relative twisting 
of the armour with respect to the conductors, which is 
important to accurately calculate how the armour 
influences the cable losses, both directly in the armour 
and indirectly in the cable sheaths. Due to the field 
dependent permeability and hysteresis losses in the 
armour, the cable resistance increases with current 
[2][3][4], a feature that is consistently accounted for in the 
formulas.  
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INTRODUCTION 

Accurate calculation of power loss in three-core cables is 
becoming increasingly important in order to cost-optimise 
the cable design in many submarine applications. 
Dynamic rating of submarine cables connecting offshore 
windfarms is one of many examples. Since the conductor 
temperature increases with cable losses and the armour 
loss according to IEC 60287 may reach up to 40-50% of 
the total loss, a too conservative calculation of the armour 
loss may lead to unrealistically high conductor 
temperatures and oversized conductors. This paper 
proposes analytic formulas for armour loss in three-core 
cables for better cost optimisation. The analytic equations 
are compared to measurements and FEM-calculations, 
showing good agreement.  

ARMOUR LOSSES  

Due to the twisting of both the armour and power phases 
of submarine three-core cables, the cable parameters are 
more complicated to estimate than for standard 
underground cables, having no armour. When averaged 
over one effective pitch length between the phases and 
armour, the armour wires will see a zero induced voltage 
[1]. The losses in the armour are as such only due to eddy 
currents and hysteresis losses, not circulating currents. 
This cancellation by stranding was first noted in Ref. [1], 
and a 2.5D finite element model was developed that 
showed good comparison with measurements on power 

umbilicals and power cables at low currents. 

As described by IEC 60287-1-1 for armoured single core 
cables [2], the angle between the armour wires and the 
power phases influences the armour losses. This is 
because the magnetic field parallel to the armour wire will 
behave differently than the magnetic field perpendicular to 
the armour wire. This was recently incorporated in a 
circuit model and a Finite Element Model of a three-core 
submarine cable [3]. From Maxwell’s equations it can be 
derived that the parallel component of the magnetic field 
is continuous at the boundary between two different 
materials (1 and 2) 

 �||(�) = �||(�) [1] 

And the perpendicular component of the magnetic flux 
density is continuous 

 �	(�) = �	(�) [2] 

To study how the armour influences the impedance of a 
threecore cable Ampères law and Faraday’s law is used
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Ampères law describes how a current creates a magnetic 
field, and Faraday’s law describes how a time varying 
magnetic field creates an induced current/voltage. 

First a single armour wire is studied in a field with both a 
component parallel B|| and perpendicular B⊥ to the wire 
(see Figure 1). Outside the armour wire there is no current 
J=0, which gives in cylindrical coordinates for the 
component parallel to the wire 
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With solution  
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And inside the armour wire (J≠0) 
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Where ( = (1 − *)+,-

� , ω is the angular frequency, σ is 

the conductivity of the armour wire, and µ is the magnetic 
permeability. With general solution 

 ��( ) = ./012(( )   [6] 

Where I1(x) is the modified Bessel function of first kind 
(bold is used to differentiate Bessel function from current). 
Solving with appropriate boundary conditions the solution 
is 




