North Auckland and Northland 220kV Cable Project – Managing Thermo-Mechanical Forces in Large Conductor XLPE Cable Circuits

Richard **JOYCE**, Transpower, Wellington, New Zealand, <u>richard.joyce@transpower.co.nz</u> Ian **McBURNEY**, NAaN Project Manager, Auckland, New Zealand, <u>macbee@clear.net.nz</u> Brian **GREGORY**, Cable Consulting International Ltd, Sevenoaks, UK, <u>brian.gregory@cableconsulting.net</u>

ABSTRACT

The North Auckland and Northland (NAaN) cable project is one of the most interesting and technically challenging long length land cable routes in the world, involving a major bridge crossing, a shared long length deep tunnel and buried duct routes, which pass through the centre of a major city.

The Utility recognised that sound thermo-mechanical design is an essential foundation for in-service reliability of large conductor 220kV 2500mm² XLPE cable systems.

Contractors were required to measure cable mechanical parameters and demonstrate the strength of cable system components and then validate the thermo-mechanical designs with FEA simulation techniques.

KEYWORDS

Auckland, NAaN, thermo-mechanical forces, XLPE cable, duct, tunnel, bridge crossing, rigid section, flexible section, transition section, locking wave, mechanical parameters.

INTRODUCTION

Auckland, the largest city in New Zealand, is almost completely surrounded by water. The City, coloured in grey in Figure 1, occupies a narrow isthmus between the Manukau Harbour on the Tasman Sea to the southwest and the Waitemata Harbour on the Pacific Ocean to the east.

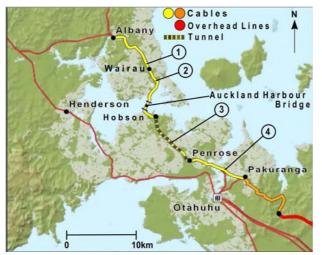


Fig. 1: NAaN project completes the Auckland ring

The central business district (CBD), item 3, lies adjacent to the Hobson Substation and is separated from the Northshore area of Auckland, items 2 and 1, by the Waitemata harbour. This is crossed by the Auckland Harbour Bridge (AHB), which carries a major motorway. The NAaN cable project comprises the yellow section in Figure 1. The 36.5km long cable route is challenging for the management of cable thermo-mechanical forces. It involves large conductor sizes (Table 1), duct and tunnel sections, major bridge crossings and earthquake design requirements.

Table 1.	Installation	Sections	and	Cable	Types
10010 11	motanation	00000000	ana	ousio	1,9000

Installation Section		Cable Types				
N°	Туре	L	Conductor	Sheath	Type*	
		km	mm ²			
1	Duct	8.4	2500	CAS	1 X	
2a	Duct	5.9	2500	CAS	1 X	
2b	Bridge	1.35	1600	APL	2 X	
2c	Duct	2.4	2500	CAS	1 X	
3	Tunnel	9.4	2500	APL	3 Y	
4	Duct	9	2500	CAS	4 Y	
Total: 36.5						
CAS: welded corrugated aluminium sheath						
APL: aluminium plastic laminate sheath						
* cable suppliers: X and Y						

Transpower required the largest current rating for the cable circuits reasonably achievable. Table 2 gives the power and current ratings by Section. 2500mm² enamelled copper conductors were specified for the inground Sections 1, 2a, 2c and 4 and deep tunnel Section 3. Section 2b on the Auckland Harbour Bridge was a complete drum length with no joints (1,350m) and as it was installed in air the smaller and lighter 1600mm² enamelled copper conductor achieved the same current rating.

	-		-	
Se	ection and	Rating		
No	Туре	Conductor	MVA	Α
		mm ²		
1	Duct	2500	602	1580
2a	Duct	2500		
2b	Bridge	1600	602	1580
2c	Duct	2500		
3	Tunnel	2500	781	2050
4	Duct	2500	735	1930

In 2001, Transpower and the local utilities started the development of a transmission corridor through the centre of the city, connecting Penrose Substation in the south to Albany Substation in the north. Together with an existing overhead line this would create a 220kV ring around Auckland City, Figure 1, and provide the opportunity for diverse supply routes to the major load centres.

A need was also identified to reinforce the transmission system into Auckland from the south. The North Island