Résumé
Pour améliorer la fiabilité d’un câble à tension constante, il est nécessaire de déterminer des facteurs qui nuisent à leurs caractéristiques d’isolement. Le phénomène nommé "arborescences" est reconnu comme l’une des détériorations typiques qui font l’objet de nombreuses études. Les auteurs de ce rapport effectuent des essais avant rupture de câbles en service pendant plusieurs années afin de vérifier l’existence d’arborescences d’eau, à l’origine de l’arbre électrique. Ces essais confirment l’existence d’arborescences d’eau de couleur bleue (arbre bleu). La tension d’apparition est relativement basse par rapport à celle produisant l’arborescence normale. Son développement peut s’expliquer par une détérioration électrochimique. L’arborescence bleue avec des branches étendues se forme au fur et à mesure que cette voie se développe : ce qui cause la réduction de tension de préclaquage du câble.

Introduction
Il est considéré que l’apparition d’un arbre électrique est favorisé par l’accélération de la dégradation du polyéthylène résul- tant de la réaction Redox. [1]-[3] Il est donc nécessaire de considérer que la dégradation du polyéthylène dépend de l’électrolyte qui pénètre dans l’isolation et que ce résultat peut conduire à des performances différentes en fonction des conditions de mises en service des câbles. De plus, dans le cas de l’apparition d’un arbre électrique, la présence de détails pouvant influencer la voie d’électrolyte peut également être étudiée. En conséquence, la dégradation de l’arbre électrique peut être clarifiée par le test de pré-claquage des câbles ayant une longue durée de service.

Investigation of Cables
Investigations were made on 66 kVCV cables that had been in service for more than 10 years. Composition of cables is shown in Table 1.

<table>
<thead>
<tr>
<th>Material</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductor</td>
<td>Cu</td>
</tr>
<tr>
<td>Inner Shielding</td>
<td>EVA + Furnace black</td>
</tr>
<tr>
<td>Insulation</td>
<td>XLPE + VS agent</td>
</tr>
<tr>
<td>Outer Shielding</td>
<td>EVA + Acetylene Black</td>
</tr>
</tbody>
</table>

Pre-breakdown test were applied to the removed field aged cables. [4] The pre-breakdown voltage of 38 kV was applied for 10 min. Following this, the voltage was increased stepwise at the rate of 10 kV/10 min. until a partial discharge (PD) of 200 pC was detected. At this moment, location of discharge occurrence was confirmed, and cables around that portion were sliced to observe the starting point of electrical tree.