Prefabricated, slip-on cable accessories (terminations and cable joints) are becoming increasingly widespread in high voltage cable networks up to 400 kV. Precision, factory-produced products, pre-tested quality and rapid and simple installation are major advantages of these accessories.

The same long service life is expected from the accessories as from the cables and all operating situations should therefore be taken into account for dimensioning. Individual matching is not possible; therefore, the adaptability and functional capability of a product are expected to comply with a wide tolerance range.

The accessories must largely be dimensioned for three main stresses, electrical, thermal and mechanical.

1.1 Electrical

Large field non-homogeneities and high field strengths occur both in cable ends and cable joints. The maximum field strength in these sectors can be kept reliably below the field strength in the cable and at all points below the local dielectric strength by optimum arrangement of the electrodes (stress control electrodes). The field distribution in the accessories is also determined by the cable and specific sectors of the joints must even withstand the full voltage.

Assumptions for temperature distribution must be made owing to the temperature dependence of the dielectric strength. These assumptions must be checked and corrected after thermal calculation. There are widespread computer methods used for field calculation, e.g. the finite element method, which permit extremely accurate assessments.

1.2 Thermal

The temperature distribution both in the cable and also in the accessories can be calculated from the geometric and material data, in addition to the cable losses.

1.3 Mechanical

Correct mechanical dimensioning and corresponding application during installation are determining factors for operating reliability. Some questions concerning mechanical dimensioning and matching should be described more fully during the course of these comments.

For the installation of slip-on cable accessories, the prefabricated parts are placed on the cable insulation with an expansion dependent on the dimensioning.

The expansion of the accessories produces the pressure which ensures matching of the accessories to the irregularities of the cable surface. The interface where the two elements (cable and accessories) come together is of decisive importance for the operating reliability of the overall system.