A.2.3. Experience in on-line relaxation of XLPE insulated high voltage cables

KOUTI T., Nokia Cables, Pikkala, Finland
KARPPO J., HUOTARI P., HONGISTO A., Nokia-Maillefer, Vantaa, Finland

Abstract

An on-line relaxation method has been developed to minimize mechanical stresses in the XLPE insulation and to decrease axial shrinkback. The method is based on an additional heating zone in the middle of the cooling section of the Continuous Vulcanizing (CV) line. Insulation surface is heated up and cooled down again. This treatment reduces internal mechanical stresses significantly. Friction between the conductor and the conductor screen is also increased.

The on-line relaxation method has been examined in a new vertical high-voltage Completely Dry Curing and Cooling (CDCC) line. Several cables have been tested using standard tests as well as some ad hoc tests developed specially for determining internal stresses in XLPE insulation. These tests show clearly that both shrinkback and internal mechanical stresses can be significantly reduced.

This paper discusses:

• Mechanical stresses of XLPE insulation
• The on-line relaxation method invented to reduce mechanical stresses and shrinkback of the XLPE insulation in high voltage cables
• Comparison between non-relaxed and relaxed high voltage cables, Visual inspection, inspection of mechanical forces, shrinkback and electrical tests have been carried out.

Mechanical Stresses of XLPE

Temperature dependence of XLPE results in uneven mechanical stresses inside the cable insulation. This phenomenon can be explained as follows.

In the Continuous Vulcanizing (CV) process, the conductor is first covered with extruded XLPE. Then it is heated up in a pressurised atmosphere to activate cross-linking of XLPE insulation material. The specific volume of the XLPE insulation is now much higher than at a room temperature.

Finally, XLPE insulation is cooled down from the outside before leaving the CV tube. In the beginning of cooling the insulation surface cools, crystalizes and becomes hard first, while the outer diameter of the insulation is still much larger than at a room temperature. The interior is still hot, soft and expanded. Then the interior cools down, crystalizes and tries to shrink. However, large diameter of the hard insulation surface tries to prevent this shrinkage (Figure 2). As a result, radial strain appears in the cable insulation.