С Е Г Achievement and experience in service of long length High Voltage AC electrical links by insulated power cables

Ken Barber

Mexans

B1

Ш О

Introduction to Long length AC Cable systems

Why is there now such a significant interest in Long Length AC transmission Power Transmission by insulated cables.

Now possible with new cable designs and materials

- Transfer power from renewable energy sources to the grid
- Need to provide electric power to remotely located plants
- Difficulties in obtaining approvals for OHL
- Quicker implementation time than using OHL
- Lower cost differential between Underground and OHL
- Need for lower losses
- Environmental issues

Long Length HVAC insulated cable system

- At power frequencies cables behave as capacitors therefore they generate reactive power – hence some inductive reactance may be required in the system.
- Conversely overhead lines because of their spacing generate inductive reactance – hence some capacitive compensation may be required at substations.
- It can be seen that a mixture of AC Cables and AC Overhead lines might be quite compatible.
- Proposed definition of A long length of insulated cable:-
 - is one where the load due to the capacitive current needs to be taken into account in the system design.
 - typically this would be 40 km for voltages less than 220 kV
 and 20 km for voltages above 220 kV

CURRENT STATE of DEVELOPMENT

Modern HVAC cables

- Today's 400kV XLPE cable have very low dielectric losses
 - Many times lower than the old oil-filled cables
- The operating temperature of XLPE cable significantly higher
 - Hence ratings are much improved compared to SCFF cable
- XLPE cables can be made and installed in long lengths
 - No concerns about changes in ground level and oil pumping

Surge protection

- Cables need protection from flashovers
 - Now we can install ZnO arrestors at terminations

Reactive compensation

- Today there are more capacitor banks and coils in the system along with power electronics such as SVCs etc.
 - Inclusion of reactive compensation is not so much of an issue.

Installation

- Today we can use HDD to cross under rivers, roads and rail.
 - In the past such crossing could only be done with overhead lines

Technical performance & Practical examples of HVAC a link

- For technical performance of HVAC cable systems reference can be made to the report by WG C4.502
 - "Power System technical performance issues related to the application of long HVAC cables".
 - Question should the link be AC or DC Economics
- General Cable design & Installation Issues
- Practical examples and experience of HVAC links
 - Long length AC links now used in more than 20 countries

AC1- a 100km link with 132 kV AC cable system

CE – B1 CABOS ISOLADOS

CE

Latin American Workshop 2013

AC2 – a 100km link with - 220 kV AC cable system

Comparison of AC – DC link

- Feasibility of 100 km UGC systems to connect remote plants
 - 132 kV and 220 kV AC options and ± 150 kV DC option
- Lower total losses in AC systems compared to DC system
 - Cable losses slightly higher for AC but converter losses higher
- Investment cost advantage for AC systems over DC system
 > Higher cable and installation cost for AC offset cost for converters

Cost	AC1	AC2	DC
Cable	25 M€	26.5 M€	17.5 M€
Civil works and installation	25 M€	25 M€	17 M€
Accessories and installation	3 M€	3.5 M€	2.5 M€
Reactors and installation	2 M€	3 M€	-
VSC terminals and installation	· ·	· ·	40 M€
Project management	5 M€	5 M€	5 M€
Total	60 M€	63 M€	82 M€

8

As reported at WETS 11

CE – B1 CABOS ISOLADOS

Cable design

- Very important when considering long lengths of AC underground cable
- Compromise between lowest cost and robust design
 - Enabling ease of installation with long service life
- Copper or aluminum conductor
 - Cost, weight, supply lengths, installation, joints

Cable installation

- Long cable length is key factor
 - Reducing number of joints and jointing cost
 - Reducing transportation and installation costs
- Cable laying
 - Trench excavated by conventional means
 - Trench excavated by trenching machines with rock saws
 - Direct ploughing

REVIEW of Current LONG LENGHT AC LINKS

➢ More than 50 AC cable links listed in the WG 1.07 report

 However less than 5 of these met the new criteria for the definition of a long length AC link.

> At WETS 11 a total of 29 AC links were reported

 But at that time only 5 of these met the criteria for a long length AC link

- More recently in TB490 "Testing of AC submarine cable" a total of 30 AC links were reported
 - Of these 13 meet the criteria for a long length AC link
- Since in June 2013 we have found
 - More than 40 projects that meet the new criteria
 - Clearly much progress is being made

Cigré -Bras

Long length high voltage links by AC insulated power cables in France & Belgium

ltem no	Country of the link	System	Power Voltage Length	Cable type & line characteristics	Comments & Compensation
1	France	RTE Suburb of Paris Nanterre - Nourottes	530 MW 225 kV 21 km	l = 499,84 μH/km c = 229,2 nF/km 1600 mm² Cu - XLPE	Referenced WETS 11 No compensation
2	France	Boutre –Trans (commission 2015)	MW 225 kV 65 km (+25km +20km)	2000/2500 mm2 CuE XLPE	New Project under construction
3	France	Merlatière- Recouvrance (Commission 2015)	450 MVA 225 kV 38km	2000/2500mm² Al XLPE	New Project
4	Belgium	Avernas- Bois L'image – (Koksijde- Slijkens & Tihange - Avernas) (2002)	350MVA 150kV 1 x 33 km 2 x 30 km	2000mm ² AI XLPE (1 Single Circuit and one Double circuit)	Referenced in WG B1.07 as SP06
5	Belgium	Thornton Banks Wind Farm (2008)	325 MW 170 kV 2 x 38km	1000mm2 Al 3 core XLPE - Submarine	Complete offshore wind farm.

CE – B1 CABOS ISOLADOS

Long length high voltage links by AC insulated power cables in U.K.

ltem No	Country of the link	System	Power Voltage Length	Cable type & line characteristics	Comments & Compensation
6	UK	Isle of Mann Interconnection (Installed 2000)	60 MW 90 kV 104 km	300mm ² Cu 3 core XLPE – Submarine (2000)	Compensation at each end. Was the worlds longest AC power cable link.
7	UK	London Array	630 MW 150 kV 53 Km	630 & 800 mm ² Cu 3 core , XLPE - Submarine	
8	UK	New Cross 1	800 MVA 275 kV 21.0 km	1613mm ² Cu SOFF	
9	UK	St Johns Wood	1600MVA 400 kV 25.5 km	2500mm ² Cu XLPE Tunnelled	Compensation at one end.
10	UK	New Cross 2	800 MVA 275kV 21.2 km	1613mm ² Cu SOFF	
11	UK	West Duddon Sands Wind Farm	389 MW 155kV 41 km	1000mm ² Cu 2 x 3 core XLPE - Submarine	New Project

CE – B1 CABOS ISOLADOS

Long length high voltage links by AC insulated power cables in Denmark

ltem No	Country of the link	System	Power Voltage Length	Cable type & line characteristics	Comments & Compensation
12	Denmark	Aarhus-Aalborg (In operation since 2004)	2x 1,000 MVA 380 kV 2 x 14.7km	Double circuit hybrid . 3 siphons total length of 14.7 km. Rating OHL per circuit 2,000MVA, cable 1,000MVA+ (cyclic rating. 1,200mm2 AI – XLPE	3 reactors, 70, 100 & 140 Mvar, See WG B1.07 SP01
13	Denmark	Horns Rev 2 (2009)	215 MW 170 kV 42 km	630 mm2 Cu 3 Core XLPE - Submarine	
14	Denmark	Lolland-Zealand (2010)	200 MW 145 kV 4.6 + 14.6 km land + 28 km Submarine = 47km total	Landmm2 Al. XLPE Submarinemm2 Al XLPE Dble-crt, XLPE, land+sub	
15	Denmark	Connection of the Anholt Wind Farm to the grid (land cable) (2012)	400 MW 235 kV 59 km + 24.5 km	Land 2000 mm ² Al, 5 sectors XLPE (0,226 µF/km). Submarine 1600 mm2 AL (Solid) XLPE - Submarine	Compensation at both ends.

14

Ц

Latin American Workshop 2013

Long length high voltage links by AC insulated power cables In Netherlands and Corsica

ltem No	Country of the link	System	Power Voltage Length	Cable type & line characteristics	Comments & Compensation
16	Sardinia - Corsica	SARCO	150 MVA 150 kV 31 km (11 + 15 + 5 km)	Land 400 mm2 Cu XLPE Submarine 400 mm2 Cu – 3 core XLPE – Submarine	See WG 1.07 SP 20
17	Netherlands	Randstad 380kV (In operation since may 2013)	2 x 2,640 MVA 380 kV 2 x 10km	Double circuit hybrid .Total length 20 km (2x 10 km) and 2 cable/phase 2,500 mm2 Cu. XLPE	Both ends 3 x 100 Mvar, (compensation at 50kV) Reported at WETS 11
18	Netherlands	Alphen- Gouda (In operation since 1982)	300 MVA 150 kV 22.6km	800mm2 Cu SCOF	Single side 1 x 50 Mvar at 50kV

These are circuits <40km below 220 kV

Long length high voltage links by AC insulated power cables Italy & Spain

ltem No	Country of the link	System	Power Voltage Length	Cable type & line characteristics	Comments & Compensation
19	Italy	"Sorgente- Rizziconi" (Calabria- Sicily)	2000 MW 380 kV 41 - 43Km 2 Circuits	Each cct: 3 km land - 2500 mm ² Cu, XLPE 36–38 km sub - 1500 mm ² Cu, SCFF PPL 2 km land - 2500 mm ² Al - XLPE (single core)	Line-connected. Each cct: 285 Mvar at each terminal (ratings @420 kV) Currently under construction
20	Italy	Malta	225 MW 220 kV 118 km	20 km land - 1000 mm ² Al XLPE (single-core) 98 km sub. 630 mm ² Cu 3- core XLPE – submarine.	Line-connected. 220 Mvar Sicily, 60 ÷ 120 Mvar Malta (ratings @245 kV) Currently under construction
21	Tunisia	Tunis Rades Grombalia 2 (2005)	MVA 225 kV 24.7 km	1000 mm2 Cu XLPE	
22	Spain Mallorca - Ibiza	Interconnectio n Red Electrica (2014)	MVA 145 kV 117 km	300 mm2 Cu 3 core XLPE – Submarine (2014)	Currently under construction

16

CE – B1 CABOS ISOLADOS

Ц

Long length high voltage links by AC insulated power cables Sweden & Norway

ltem No	Country of the link	System	Power Voltage Length	Cable type & line characteristics	Comments & Compensation
23	Sweden	Aland Interconnection (1973 – 2015)	35 MW 84 kV 55 km 80 MW 110 kV 63 Km	185 mm2 Cu 3 x ! Core XLPE Submarine (1973) 240mm2 Cu 3 Core XLPE Submarine (2000)	This was one of the first XLPE submarine cables
24	Sweden	Bornholm Interconnection (1979)	…MW 72kV 43 km	240 mm2 Cu 3 core XLPE – Submarine	
25	Norway – Sweden	Gjoa (2010)	40MW 115 kV 100 km	240 mm2 Cu 3-Core XLPE – submarine,	
26	Norway - Sweden	Goliat (2013)	75MW 123 kV 106 km	mm23-core XLPE - submarine	

СE

Latin American Workshop 2013

Long length high voltage links by AC insulated power cables USA & Korea

ltem No	Country of the link	System	Power Voltage Length	Cable type & line characteristics	Comments & Compensation
27	USA	Middletown- Norwalk	600 MW 345 kV 38 km	Dbl-crt; 1500 mm2 Cu, XLPE	
28	USA	Bayonne	512 MW 345 kV 11 km	mm2 XLPE sub + land	150 Mvar
29	Korea	Nam Pusan- BukPusan	520MW 345 kV 21.9 km	2000 mm2 Cu SOFF PPL C= 0.37 uF/km 3 cts	2 X 200 Mvar
30	Korea	Sin Sungdong	520MW 345 kV 17.0 km	2000 mm2 Cu SOFF PPL C= 0.37 uF/km 3 cts	2 x 200Mvar

These are circuits < 20 above 220 kV

Long length high voltage links by AC insulated power cables N. Africa, Australia, NZ. & China

ltem No	Country of the link	System	Power Voltage Length	Cable type & line characteristics	Comments & Compensation
31	Saudi Arabia - Bahrain	GCC – GRID Interconnection (2006)	1200 MVA 400 kV 40 + 7 = 47 km	mm2 Cu SCFF - 7 km Land + 40 km Submarine	Awarded in 2005
32	Saudi Arabia	Oil Platform (2013)	MVA 245 kV 45 km	500 mm2 Cu, 3 Core XLPE - submarine	
33	UAE	Delma Island Interconnection (2006)	MW 145 kV 42 Km	300 mm2 Cu 3 Core XLPE – Submarine	
34	Australia NSW	Transgrid (200)	600MW 330 kV 27 km	1600mm2 Cu SCFF	Inn WG 1.07 report
35	Australia Victoria	Victorian Desalination supply	>130 MW 245 kV 88 km	400 & 500 mm2 Cu XLPE	2 x 52 Mvar, One 38km and other 75km from the desalination plant. Completed in 2012
36	China	Hainan- Guangdong	740 MVA (Cosφ=0.98) 525 kV 31km	800 mm ² SCFF cable Charging current: 22.8A/km	320 Mvar at each end.
icable	2	1	1	1	g Cigré -Bras

Victorian desalination plant project

Pipeline This creates an 84km extension to the Melbourne water network.

annually if required. Underground power The power supply for the project will be an underground High Voltage Alternating Current (HVAC) cable, co-located with the transfer pipeline in the same easement. This innovative solution has less energy loss than HVDC and is less intrusive than overhead power.

Broadband A new broadband fibre optic cable along the length of the power supply will improve communication services for regional communities in the project area

Booster pump station A booster pump station maintains the pressure needed to pump the water from Wonthaggi to Cardinia Reservoir. Infrastructure to facilitate the delivery of water through the pipe will be integrated into the surrounding landscape.

Water delivery point Delivery points enable desalinated water to be supplied directly to consumers through - new or existing pipe infrastructure.

- 150 billion liters of water per year
- 90 MW of power required by plant
- 87 km distance to grid connection
- Underground 220 kV AC cable system
- Compensation units at two locations

СE

Latin American Workshop 2013

Long length high voltage links by AC insulated power cables in Japan

ltem No	Country of the link	System	Power Voltage Length	Cable type & line characteristics	Comments & Compensation
37	Japan	Shin-Toyosu Line (TEPCO)	900MW/cct(final power 1200MW/cct) 500 kV 40 km 2 circuits (final circuits 3)	2500mm2 Cu XLPE	See WG 1.07 SP 13 Compensation
38	Japan	Katsunan - Setagaya Line (TEPCO)	480 MW/cct (final power) 275 kV 32.5 km 3 circuits	1200,1400,1600mm 2 Cu XLPE	Compensation
39	Japan	Yokohama- Kohoku Line (TEPCO)	3000 MW 275 kV 20km(3circuts)&16k m(1circuit)	2000,2500mm2 Cu XLPE	Compensation
40	Japan	Kawasaki- Toyosu Line (TEPCO) 2012 – 2015 & 2016	1900 MW 275 kV 22 km 3 circuits	2500mm2 Cu XLPE	Compensation

Long length high voltage links by AC insulated power cables in Japan (cont.)

ltem No	Country of the link	System	Power Voltage Length	Cable type & line characteristics	Comments & Compensation
41	Japan	Chiba- Katsunan Line (TEPCO) 2012 & 2014	660 MW/cct 275 kV 30 km 2 circuits	2000 ,2500mm2 Cu XLPE	Compensation
42	Japan	South- Route by CEPCO (Chubu)	590 MW/circuit 275 kV 26.8 KM 2 Circuits	2,500 mm2 Cu XLPE	Compensation
43	Japan	West-Route by CEPCO	660 MW/circuit 275 kV 23.1 km 2 Circuits	2,500 mm2 Cu XLPE	Compensation
44	Japan	NishiOsaka- Ozone Line by KEPCO 1995 & 2005	322MW 275kV 19.0km	1500mm2 Cu XLPE	Compensation
45	Japan	Matsushima- Narao Line by Kyushu 2005	60MW/circuit 66kV 53km 2 circuits	325mm2 Cu. 3 core XLPE - Submarine	

СE

Latin American Workshop 2013

Long length high voltage links by AC insulated power cables in rest of world

Item No	Country of the link	System	Power Voltage Length	Cable type & line characteristics	Comments & Compensation
46	Africa - Zanzibar	Pemba (2010)	25MVA 36kV 78 km	mm2 Cu 3 core XLPE - Submarine	
47	Africa - Tanzania	Zanzibar 2	100 MW 145 kV 37 km	300 mm2 Cu 3 core XLPE Submarine	
48	Thailand	Koh Samui 3	MVA 115kV 54 km	500mm2 Cu 3 core XLPE - Submarine	
49	Vietnam	Phuc Quo	MVA 110kV 53km	400mm2 Cu 3 core XLPE - Submarine	

This are circuits <40km

Ш О

Latin American Workshop 2013

Challenges for Implementation

• System design issues

- Matching the power rating for hybrid circuits
- Acceptance of cyclic ratings thermal delay for cables
- Protection system arrangements Cable vs. OHL,
- Lower power losses on the cable and no corona losses
- Reliability repair times for underground cable
- Controlling EMF easier for cable than OHL ,
- Controlling future changes in route to ensure circuit rating
- Amount of reactive compensation location
- Impact on other network components
- Sheath bonding for long lengths tolerances
- Sheath voltage levels
- Link box maintenance inspection monitoring
- Thermal mechanical forces from long straight cable lengths

Challenges for Implementation (cont.)

- Installation
 - Right of way,
 - Remote areas transportation
 - Inductive coupling with OHL,
 - Commissioning Testing

Monitoring

- Long distance Distributed Temperature Sensing
- Control of route condition

Maintenance

- Fault location
- Access to route information GPS data
- Methods to reduce repair times and outage in case of cable damage.

Ц

How to address these challenges

- A CIGRE task force has recommended that a WG be formed to prepare a technical brochure
 - this would address these challenges and other issues.
- It would also include practical examples
 - from each member country on the WG.
- Given the limited information at this time it is felt this document would be of value to any organisation
 - considering the installation of a long length AC cable link.
- The target is to have more information available
 - for the Jicable conference & WETS 15 in June 2015
- We welcome your comments and questions !

Cigré -Brasil