

XXISt century: The century of Nanoconvergence

From data storage to power cables

Nanotechnology is not new!

Lycurgus' cup, Roman Empire IV^E Century, British Museum

Transmitted light = red; reflected light = green (40 nm particles in the glass)

What is nanotechnology?

Convergence between technology, physics, chemistry and biology

Exploit the specific properties of the world at atomic scale (mesoscopic and quantum effects)

If I were asked for an area of science and engineering that will most likely produce the breakthroughs of tomorrow, I would point to nanoscale science and engineering

Neal Lane, Former Assistant to the US President for Science and Technology

Melting point depends on the size!

OUTLINE

- Computing and Data Storage
- Materials and Manufacturing
- Health and Medicine
- Energy and Environment
- Transportation
- Security
- Carbon nanotubes, the way to transport electricity

OUTLINE

- Computing and Data Storage
- Materials and Manufacturing
- Health and Medicine
- Energy and Environment
- Transportation
- Security
- Carbon nanotubes, the way to transport electricity

Computing & Data storage

- Processors performance X 10⁶
 (Gflops -> Pflops)
- Small mass storage devices → multitera bit levels
- Smart nanosensors: collecting, processing and communicating massive amounts of data with minimal size, weight, and power consumption
- Higher transmission frequencies: more efficient utilization of optical spectrum to provide at least 10 times the current bandwidth

Quantum computing

Data storage capacity

Current data storage density ~ 109 bits/cm²

1 bit ~ 100 atoms (at the best)

Theoretical data storage capacity = $X 1000 (10^{12} \text{ bits/cm}^2)$

3D => Data storage capacity could be $\sim 10^{16}$ bits/cm³ (10^{12} bits/cm² x 10^4 /cm)

IBM Millipede

Combine the advantage of the hard disk (storage capacity, target ~ 1 Tbit /in²) and the advantage of DRAM (speed access)

Principle: nanometric holes on the surface of an thermo active polymer

IBM Millipede

 3.10^{10} bits / cm²

10 nm

Smart dust components / smart sensors

Smart sensors

Smart sensors on micro flyers

UAV insect size

Quantum computing

"In just 38 months, you can earn big PROFIT\$ as a fully trained QUANTUM MECHANIC!"

Learn secrets of QUANTUM MECHANICS in your own home, in your spare time, without quitting your present job!

tum mechanic. It takes open-mination, drive, imagination and OUT.

Wrong, electron breathi But it's

Wrong, electron breathi But it's

Angle you a whole money. Most of all, money. Bob is putting a son through medical

That's right, friend, the nation is crying for fully trained quantum mechanics. Can you hear it? You mechanics. Can you read in 10 and 10

DO YOU HAVE WHAT IT THIS COURSE TEACHES YOU TAKES TO BE A QUANTUM ALL YOU NEED TO KNOW, EVERYTHING. THERE ISN'T A SINGLE THING ABOUT

close. We teach you a whole bunch of stuff, Mesatron balanc-School.

NATION CRYING FOR FULLY
TRAINED QUANTUM
MECHANICS

Durch of STUT, Messall gament.
Neutrino tubrication, Proton
tune-up. How to use a molecule

YOU GET PROFESSIONAL EQUIPMENT TO LEARN WITH STEAK
Yep, Quantum mechanics make and bill for your mailman's high bucks. Heavy bread. They're our bill for your mailman's high bucks. Heavy bread. They're our bill res 4503. Which is chear rolling in dough. They carry big when you consider how proud wads of 10's and 20's in their you'll be to hear your son say, portive Cadillacs and buy their Machanic!" And addy's a Quantum drive Cadillacs and buy their Machanic!"

NO RISK! Send NOW for

You get this Professional cyclotron with your course—and it's

NO OBLIGATION - NO SALESMAN WILL CALL

Bob's School of

EAST BELCH, NORTH DAKOTA 51106

Approved by Peruvian Ministry of Agriculture
 Approved by Bob

-GUARANTEE-

I hereby guarantee that, without a doubt, this is the only course of its kind in the world. You'll be completely satisfied, or I'll cheerfully keep your

LISTEN TO WHAT THESE SATISFIED CUSTOMERS SAY

"One of my most proud moments was getting my diploma last May. I enrolled right after the war. That was the Big One, son. W.W. !!!"
"POP" CHERRY, Sun City, Ariz.

"I used to be Prime Minister of major European nation. Then I too this course. Now I drive a big car eat steak, and make over \$6.00 ar

hour!" HARRY DEAN II, Tater, Ark.

MAIL COUPON NOW Bob's School of Quantum Mechanics 7036 State Road 29

East Belch, ND 51106

Enclosed please find my \$16.95 n cash (no check or money order, please). PLEASE RUSH me my FREE BROCHURE on an exciting carreer in QUANTUM MECHANICS. I understand if I am not completely satisfied, I have been had.

APPROVED FOR VETERANS

of the Spanish-American War

Barring from Dydle Engineer Heartin

Schrödinger's cat

Take a cat, cyanide, a radioactive particle, put the whole in a box and let wait one hour!

Letter from Schrödinger to Einstein, 1935

Quantum computing

A traditional bit is 1 or 0

A Quantum bit (Qubit) is a superposition of state 1 and 0

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

$$(0 \le \alpha \le 1 \text{ and } 0 \le \beta \le 1)$$

Quantum computing Is it SF?

Return to Session

Quantum computing Shor's algorithm (1995)

Principle of RSA cryptography: factorization of a number

The solution is easy to verify (multiplication) but difficult to find (factorization in prime number)

Example:

Classical computing: three months to factorize a number of 130 digits and 10¹⁰ years (the age of the Universe) for a number of 400 digits

Quantum computing: still three months to factorize a number of 130 digits but only 3 years for a number of 400 digits!

Quantum computing First tentative

Qubit Ion trap (NIST)

Quantronium super conducting qubit (CEA)

Quantum computing is not for tomorrow!

Quantum cryptography

Quantum key distribution Quantum random number generator

Key distribution over optical fiber with absolute security

Main features

- First quantum cryptography system
- Security guaranteed by quantum physics
- Point-to point key distribution.
- Standard optical fiber
- Distances up to 70 km
- ► Key rate up to 1000 bits/s
- Compact and reliable

Key distribution is a central problem in cryptography. Currently, public key cryptography is commonly used to solve it. However, these algorithms are vulnerable to increasing computer power. In addition, their security has never been formally proven.

Quantum cryptography exploits a fundamental principle of quantum physics - observation causes perturbation - to distribute cryptographic keys with absolute security.

id Quantique is introducing the first quantum key distribution system. It consists of an emitter and a receiver, which can be connected to PC's through the USB port.

id Quantique

10, nat Cirglia 1205 Genève Bestcorland Tel: [+41]:022 T02 69 29 Fax: (+41):022 T61 09 sometiming(globushippe.com web: http://www.stouentibus.com

Example: Idquantique (start up): www.idquantique.com

Quantum cryptography already exists: 60 km with OF; 150 km with free space transmission

OUTLINE

- Computing and Data Storage
- Materials and Manufacturing
- Health and Medicine
- Energy and Environment
- Transportation
- Security
- Carbon nanotubes, the way to transport electricity

Materials and manufacturing

Self-cleaning surface (lotus effect)

W. Barthlott, Univ. of Hamburg

Epicuticular wax

(Source: Metin Sitti, CMU)

Self-cleaning surface

Nano relief => the water does not wet

Self-cleaning glass

Pilkington's self-cleaning glass

Return to Session

SPACEDAILY

YOUR PORTAL TO SPACE

A space elevator would consist of a cable

attached to the surface and reaching

Space elevator

Edwards Bradley's project:
The satellite is placed in orbit thanks to the CNT cable

The satellite is pushed thanks to the ground laser which strike the solar panels installed under the platform

Estimated cost ~ 6 billion \$ for the first project

IV benathie svievehendethujbs of rebouptathie usiese who be gizeins sandherchendibe, vhaeelieghet is, thief lighed is made diffesied in material

light

Nano Ceramic

YAG

Y₃Al₅O₁₂ : Nd

European project

Mirrors for space application

Yesterday

CeSiC: 25 kg/m²

12 kg/m²

Future

Today

Jet

= GP7200

Various heatresistant materials and alloys

- Titanium
- ~ Ti6A4V
- ~ Ti6A4V with SiC

Compressor

Entrance turbine

Turbine

GP 7200 jet for A380

Composite combustion chamber containing nanoparticules ceramics

OUTLINE

- Computing and Data Storage
- Materials and Manufacturing
- Health and Medicine
- Energy and Environment
- Transportation
- Security
- Carbon nanotubes, the way to transport electricity

Health and Medicine

This nanoscopic "submarine" could, in the near future, penetrate in the blood vessels to destroy microbes, to correct genetic errors, to remove cancerous cells and to repair tissue

Health and Medicine

The cellular vector binds the target cell

The call pluggagites the vector

The vector has been up-taken by the cell: the coaling dissolves and the genes are released

Celular vector – cell binding

Cell electroposation via the exclusive vector

The coating disadves, games are released and diffuse eaross the pores.

Detection of cancerous cells

Diagnosis of mellitus diabetesDetection of acetone in the breath of the

Detection of acetone in the breath of the patient

Diagnosis of cancer

The cantilevers can facilitate the diagnosis of cancer when they bind to the cancerous molecules

Electric detection of virus in solution by nanowire field-effect transistors

Administration of drug by micro syringe

(e.g. insulin)

Implant materials, bones repair

Bio resorb materials

Vision aid, retinal implant

Vision aid, retinal implant

The interface with the neurons is made by microfluidic channels; stimulations are carried out by chemical ways

Makoto Ishida

OUTLINE

- Computing and Data Storage
- Materials and Manufacturing
- Health and Medicine
- Energy and Environment
- Transportation
- Security
- Carbon nanotubes, the way to transport electricity

Two aspects: production and utilization

- Energy Production
 - Clean and low cost
- Energy Utilization
 - High efficiency lighting
- Solid state lighting can reduce total electricity consumption by 10% and cut carbon emission by the equivalent of 28 million tons/year*

^{*} Equivalent to 3 times the total power consumption of France

Lighting

Ambient intelligence – Philips HomeLab

Lighting

From transparency to opacity

St Gobain

5 à 28 % Efficiency

80 % Efficiency

Reproducing the chlorophyllian synthesis

Reproducing the chlorophyllian synthesis

Solar cells

2000:400

MW

2003:800

MW

2006:1800

MW

2001:3 G\$

2006:10 G\$

2011:20-30

G\$

OUTLINE

- Computing and Data Storage
- Materials and Manufacturing
- Health and Medicine
- Energy and Environment
- Transportation
- Security
- Carbon nanotubes, the way to transport electricity

Transportation

Morphing wing

NASA Dryden Flight Research Center Photo Collection
http://www.dfrc.nasa.gov/gallery/photo/index.html
NASA Photo: ED01-0348-1 Date: 2001 Photo by: NASA
An artist's rendering of the 21st Century Aerospace Vehicle, sometimes nicknamed the Morphing Airplane, shows advanced concepts NASA envisions for an aircraft of the future.

Morphing wing

Designing the 21st Century Aerospace Vehicle

Artist's concept of an adaptive, or "morphing," aerospace vehicle

Space exploration

Transportation / energy

Hydrogen storage

A hydrogen tank having an energy storage equivalent to a gasoline tank should be 3000 times larger!

Transportation

Hydrogen storage

The carbon nanotubes are able to store from 4,2% to 65% of their weight of hydrogen

The density of stored hydrogen can be close to that of liquid hydrogen

OUTLINE

- Computing and Data Storage
- Materials and Manufacturing
- Health and Medicine
- Energy and Environment
- Transportation
- Security
- Carbon nanotubes, the way to transport electricity

Quantum Cascade Laser

QC Laser spectrometer operating principle

Security: CNT Transistor for gas detection

OUTLINE

- Computing and Data Storage
- Materials and Manufacturing
- Health and Medicine
- Energy and Environment
- Transportation
- Security
- Carbon nanotubes, the way to transport electricity

Carbon nanotube

Single & Multi wall nanotubes

Single wall carbon nanotube : 2/3 SC + 1/3 metallic

Multiwall carbon nanotube: metallic

『Wffig**Single Wall Carbon Nanotubes?**

MOLECULAR PERFECTION & EXTREME PERFORMANCE

The Strongest Fiber Possible.

Selectable Electrical Properties

Metallic Tubes Better Than Copper Semiconductors Better Than InSb or GaAs

Thermal Conductivity of Diamond.
The Unique Chemistry of Carbon.

The Scale and Perfection of DNA.

The Ultimately Versatile Engineering Material.

Electronic properties

- Electric conductivity = twice that of copper
- Able to support great density of current (10⁹ A/cm²)
- Excellent electronic emissivity (point effect)
- Can be functionalized (chemistry of carbon)
- SWNT can be metallic or semiconductor (depending on the chirality)

CNT: the way to transport electricity?

Adapted from Richard Smalley

I think electric transmission is the destiny of this material and I want to make it happen

Richard Smalley, co-discoverer of fullerene, Nobel Prize for Chemistry, 1996

Return to Session

The ENERGY REVOLUTION (The Terawatt Challenge)

Energy: The Basis of Prosperity

20st Century = OIL 21st Century = ??

10 Terawatt minimum for 10¹⁰ people

165,000 TW of sunlight hit the earth

The Distributed Store-Gen Grid

- Energy transported as electrical energy over wire, rather than by transport of mass (coal, oil, gas)
- Vast electrical power grid on continental scale interconnecting ~ 100 million asynchronous "local" storage and generation sites, entire system continually innovated by free enterprise
- "Local" = house, block, community, business, town, ...
- · Local storage = batteries, flywheels, hydrogen, etc.
- Local generation = reverse of local storage + local solar and geo
- Local "buy low, sell high" to electrical power grid
- Local optimization of days of storage capacity, quality of local power
- Electrical grid does not need to be very reliable, but it will be robust
- Mass Primary Power input to grid via HV DC transmission lines from existing plants plus remote (up to 2000 mile) sources on TW scale, including vast solar farms in deserts, wind, NIMBY nuclear, clean coal, stranded gas, wave, hydro, space-based solar..."EVERYBODY PLAYS"
- Hydrogen, methanol, ethanol are transportation fuels
- Transition technology Plug-in Hybrids

Return to Sessi Energy Nanotech Grand Challenges

from Meeting at Rice University May 2003 Report available!

- Photovoltaics -- drop cost by 100 fold.
- Photocatalytic reduction of CO₂ to methanol.
- 3. Direct photoconversion of light + water to produce H_{2.}
- 4. Fuel cells -- drop the cost by 10-100x + low temp start.
- 5. Batteries and supercapacitors -- improve by 10-100x for automotive and distributed generation applications.
- 6. H₂ storage -- light weight materials for pressure tanks and LH2 vessels, and/or a new light weight, easily reversible hydrogen chemisorption system
- 7. Power cables (superconductors, or quantum conductors) with which to rewire the electrical transmission grid, and enable continental, and even worldwide electrical energy transport; and also to replace aluminum and copper wires essentially everywhere -- particularly in the windings of electric motors and generators (especially good if we can eliminate eddy current losses).

SWNT Quantum Wire

Expected Features

- 1-10x Copper Conductivity
- 6x Less Mass
- Stronger Than Steel
- Zero Thermal Expansion

Key Grid Benefits

- Reduced Power Loss
- Low-to-No Sag
- Reduced Mass
- Higher Power Density

SWNT Technology Benefits

- Type & Class Specific
- Higher Purity
- Lower Cost
- Polymer Dispersible

Production Scale-Up Path

- Rice made 1 mg / day in 1997
- Lab-scale reactor at 1 gm / hour (2002)
- CNI Pilot plant producing 20 lb /day
- CNI now testing 100 lb / day reactor

Estimated future global production of nanotubes

Prototype Wire - SWNT Fibers

- Producing Neat SWNT Fibers
 - Dry-Spun from Oleum
 - 6 to 14 Wt. % SWNT Dope
 - Extruded as 50 µm Dia. Fibers
 - 109 Tubes in Cross Section
- 100 Meters Long

Science 305, 1447-1450, 3 September 2004!!!

Quantum Wire on The Grid

Key Grid Benefits

- Eliminate Thermal Failures
- Reduce Wasted Power
- Reduce Urban R.O.W. Costs

Grid Applications & Benefits

- Eliminate Thermal-Sag Failure: Now a \$100B+ a year problem.
- Short-Distance AC: AQW could increase throughput up to ten-fold without increasing losses while using only existing towers and rights-of-way. Avoid new construction in congested urban areas – estimated over \$100M per mile.
- Medium-Distance AC: AQW could decrease resistive losses and voltage drop ten-fold if amperage were not increased. This would improve grid dynamics significantly in the range between 100 and 300 miles, where voltage stability limits deliverable power.
- Long-Distance HVDC: AQW could permit amperage throughput ten fold or reduce losses ten-fold. New conventional lines cost \$1M to \$2M per mile, plus about \$250M per AC/DC converter station.
- Remote Power: Could enable utilization of large-scale renewables and remote nuclear.

* AQW = Armchair Quantum Wire

Conclusions

• The control of the matter produced, at the end of the 18th century, a first technological and industrial revolution

- In the middle of the 20th century, the control of the matter on a micrometer scale was at the origin of a second technological revolution, which was concretized by the development of micro electronics
- It is probable that the nanosciences and the nanotechnologies, will constitute, during the 21st century, the third technological and industrial revolution

The End

Thank you for your attention