

Current installations of HVDC Cable links Australia & New Zealand and NEXANS view of issues & future trends for HVDC Cable links

Ken Barber Nexans Asia Pacific

Jicable'11, 19 – 23 June 2011 - Versailles - France

Current Installations

Project	Year	Route length Km	Number of cables	Rating MW	Type of Conversion
New Zealand inter-connection South - North	1965 & 1990	40	2 +1 250 kV	600- 700	LCC
Direct link NSW - QLD	April 2000	65	6 x 84kV	180	VSC
Murray Link VIC - SA	Oct 2002	176	2 x 150kV	220	VSC
Bass Link VIC - TAS	2006	272	1+1 400kV	500 - 630	LCC


Future Trends in DC

- SHORTER LEAD times for building new TRANSMISSION links.
- More concern about losses
- SIGNIFICANT GROWTH in DEMAND for AC & DC cable links
- Increase of voltage and power
- AC cheaper than DC for shorter length
- DC provides more flexibility for networks

Typical range of application

- For Long Submarine links MIND (Mass impregnated Non Draining) insulation is still the most suitable and economic.
- For land based links DC XLPE cable.
- For high power to transmit over shorter length, land HVDC superconductive cable

