Return to Session

7th International Conference on Insulated Power Cables

French experience in aluminium laminated screens

Paper A1- 4 June 25th, 2007

Frédéric LESUR

ede

Pierre ARGAUT

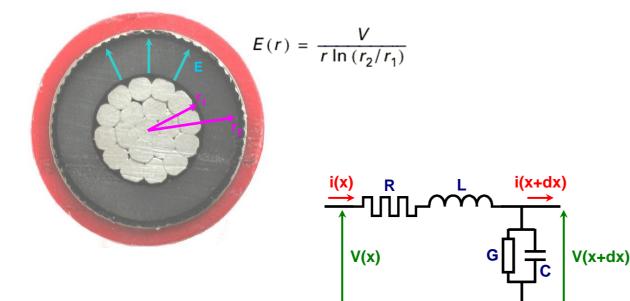
Laurent BENARD

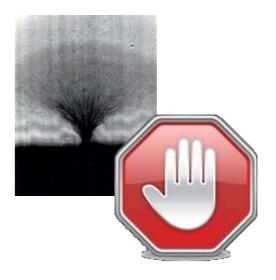
Pierre MIREBEAU

Mexans

- 1 -

Functions of the metallic screen / sheath




Electrical functions

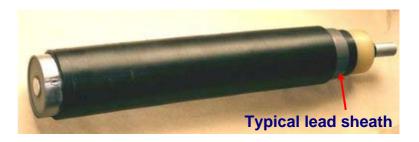
- Equipotential screen
- Capacitive current collection/draining
- short-circuit draining

Protection functions

- Water barrier
- Mechanical protection

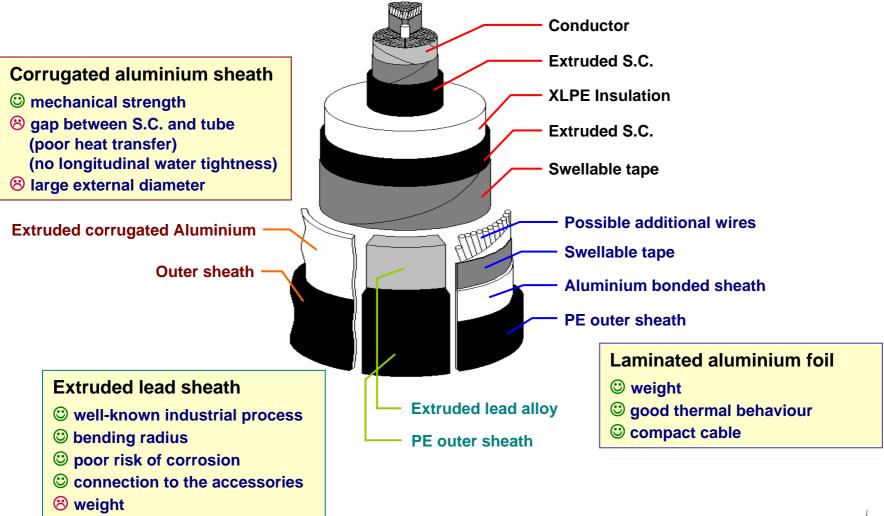
Design of the metallic screen / sheath

Main designs for HV cables


- To provide moisture barrier function
 - Extruded sheath
 - Lead sheath
 - Aluminium corrugated sheath
 - Longitudinally welded corrugated sheath
 - Aluminium sheath
 - Longitudinal tape (laminated foil)
 - Copper or aluminium
 - Stuck with overlap or seam welded
- To provide short-circuit draining (but not watertight)
 - Copper helically lapped tapes
 - Concentric wires
 - Copper or Aluminium

Typical solutions

- Lead sheath
- Aluminium corrugated sheath
- Aluminium laminated foil


Possibility to combine concentric wires

• For large short-circuit currents

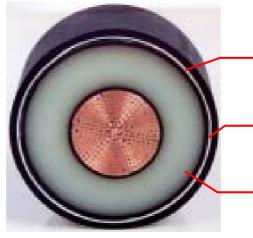
Main features of the typical solutions

Essential bonding of the foil to the outersheath

Thin aluminium foil must be bonded to a polyethylene outersheath

- To improve the mechanical behaviour
 - No crease of the foil in case of low bending radius
 - No crack in case of mechanical impact
- To prevent any risk of corrosion of the metallic foil

Design according to short-circuit current intensity



Calculation of thermally permissible short-circuit currents

IEC 60949 Publication

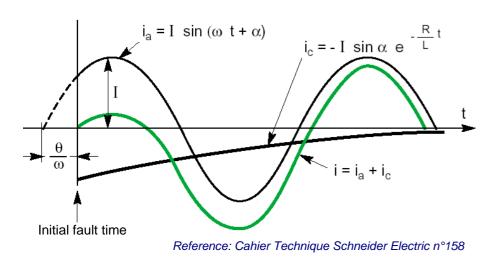
- High temperature step of the metallic screen / sheath due to the short-circuit current flow
- Adiabatic heating
 - Heat is retained inside the metallic component
- Non adiabatic heating
 - Some heat transfers into the adjacent materials during the short-circuit

Favourable configuration of extruded cables with laminated foil

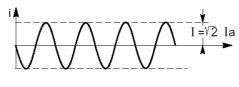
Excellent conductivity of aluminium (thermal and electrical) $K = 148 \text{ A.s}^{1/2}.\text{mm}^{-2}$

Good contact between metallic component and adjacent materials

High permissible temperature for XLPE insulation at the end of short-circuit $(\theta_f = 250^{\circ}C)$



Assumption of maximal asymmetry of short-circuit


Transient operating

- As for the switching of a R-L circuit
- Resulting short-circuit current
 - Alternative sinusoidal part (i_a)
 - depending on the electric angle characterized by the offset between initial fault time and the voltage wave origin
 - Continuous part (i_c)
 - with decreasing depending on R/L value


Two extreme configurations

• Symmetry ($\alpha = \phi \approx \pi/2$)

- Asymmetry ($\alpha = 0$)
 - French design takes into account this penalising configuration
 - τ = aperiodic time constant, depending of grid impedance

- 7 -

French HV short-circuit data

Short-circuit test

- 3 shots
 - 1st: conductor temperature = 90±4°C
 - 2nd and 3rd = 80±4°C
- Visual inspection between shots
 - No test loop damage, especially at connections

Networks characteristics

Voltage level (kV)	Intensity (kA)	Duration (s)	Aperiodic t (s)
36/63 (72.5)	8	1.7	0.2
52/90 (100)	10.3	1.7	0.2
130/225 (245)	31.5	0.5	0.16
230/400 (420)	63	0.5	0.07
230/400 (420)	40	0.5	0.06

French transmission grid

RTE: French Transmission System Operator

- Four main voltage levels: 400, 225, 90 and 63 kV
- Lines in service (km of circuits, end 2006)

Voltage level (kV)	400	225	150	90	63	Total
Overhead Lines (km)	21012	25490	1061	15048	33807	96418
Underground Lines (km)	3	902	2	406	1945	3258
Total	21015	26392	1063	15454	35752	99676

Reference: RTE 2006 Annual review report

Gestionnaire du Réseau de Transport d'Electricité

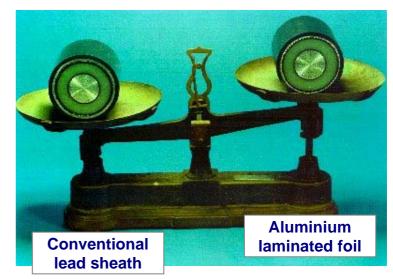
French Experience in Aluminium Laminated Screens

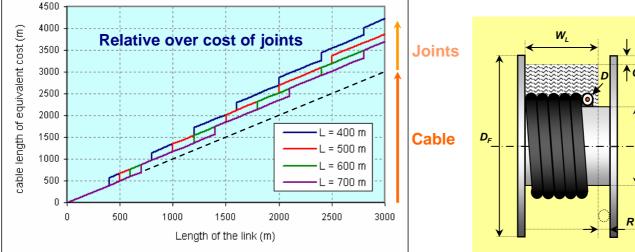
French medium voltage cable experience

NF C 33-223 cable

EDF Distribution Grid

- Medium voltage cables: 20 kV
- Very optimised design
- Extensive use of XLPE insulation and watertight aluminium foil
 - NF C 33-223 since 1979
 - NF C 33-226 since 2003
- Installation of 6000-8000 km of 3-phase circuits per year

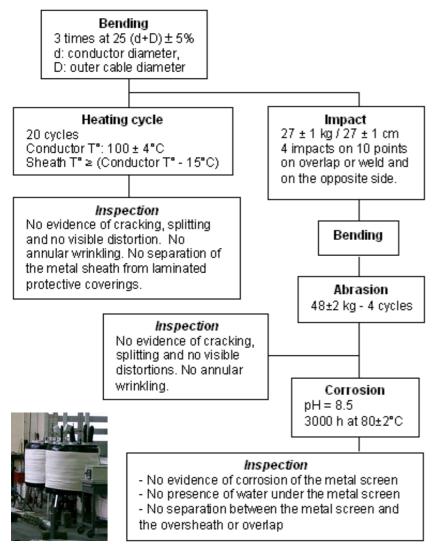

Mechanical laying in rural area


Development of HV laminated aluminium design

Designs leading to lighter cables to reduce the number of joints

- Aluminium conductors
- Aluminium laminated sheath
 - progressive replacement of lead by a moisture barrier offering similar performances and equivalent reliability
 - 90 kV: first qualification in 1997
 - 225 kV: first qualification in 2002
 - 400 kV: first qualification in 2002

D.



French Experience in Aluminium Laminated Screens

Specific French tests

A primary set of tests

 to assess the watertightness of cable designs after exposure to mechanical stress

Others tests to assess

- mechanical properties only
 - impact test and abrasion test
- radial watertightness after shrinkage
- radial watertightness after short circuits

Long term test

- 200 m loop of cable with accessories
 - 1.7 U_0 , 6000 hours / 250 thermal cycles

HV cable system installation

Improvements made possible by lighter cables and small diameters

- HV mechanical laying in rural area
- Generalization of laying in ducts
- Laying in directly buried HDPE ducts
- Long length with water pulling

Mechanical laying in rural area

HDPE ducts, directly buried

25/06/2007

Conclusion

Example

- 800 mm² Alu 52/63 (72.5) kV
- For a same permissible short-circuit current intensity
 - Same ampacity if single point or cross bonding (low eddy-current losses, good heat dissipation)

	Aluminium laminated foil	Lead sheath
Screen / sheath thickness (mm)	0.5	2.55
Overall cable diameter (mm)	64.8	68.9
Total linear weight (kg/m)	4.71	9.60
Screen / sheath weight	5.3	53.3

Reliable industrial solutions

- Many developments and specific tests have passed intrinsic issues
 - Strong bonding between foil and outersheath
 - Up to 2 mm thick foils
 - Perfect complex seam welding of laminated moisture barriers for EHV cables
 - Proven connections for accessories
- Many advantages
 - Weight, delivery length on drum,
 - Global economical interest
 - Good thermal behaviour (ampacity)
 - Environmental alternative to lead
- Aluminium laminate screen has been extended to all voltage levels (63-400 kV)
 - Sole design expected in RTE specification since 2005

