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ABSTRACT 
This paper presents an optimization algorithm applied to the 
rating calculation of unequally loaded electric power cables. 
 Whereas standards spell out the principles of rating 
calculations for single and identical equally loaded cables, 
the common situation where the cables in a trench are of 
different construction is given only a scant treatment.  The 
paper does not introduce any new calculation method but 
addresses an issue of what is the best method of loading 
groups of cables in a common trench.  To answer this 
question, an optimization algorithm utilizing barrier method is 
introduced and its application illustrated for a complex 
practical cable arrangement. 
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INTRODUCTION 
Information about the maximum current-carrying capacity 
which a cable can tolerate throughout its life without risking 
deterioration or damage is extremely important in power 
cable engineering and operation.  Ampacity values are 
required for every new cable installation, as well as for cable 
systems in operation.  With some underground transmission 
cable circuits approaching the end of their design life, the 
development of a systematic method for determining the 
feasibility of extending cable life and/or increasing current 
ratings is of paramount importance. 
 
Current rating techniques of electric power cables have as 
long a history as the cable itself.  Methods presented by 
Kennelly in 1893, [1] and Mie in 1905, [2], are still used in 
today’s standards.  Over the last hundred years many 
researchers and engineers have worked on various aspects 
of cable ratings and several international standards are in 
use today based on these works [3-6].  It would seam that 
not much new can be said about rating calculation methods. 
 However, even today the work on refining cable ampacity 
computations is being continued.  It proceeds in several 
directions: 1) experimental studies are being performed to 
fine-tune some of the computational formulas and adjust the 

value of constants, 2) numerical methods are being applied 
to overcome limitations inherent in the analytical approach, 
3) computational methods are being developed for rating 
calculations for cables laid in non standard conditions (e.g., 
deep tunnels, ventilated troughs or ducts filled with water) 
and 4) real time rating algorithms are being developed.  The 
developments presented in this paper fall into the first 
category above.  They constitute an incremental 
improvement in the power cable ampacity calculation 
methods addressing an issue of loading of different cables 
types laid in the same trench. 
 
Analysis of unequally loaded/dissimilar cables is given only a 
scant attention in the published literature.  The method 
proposed in the IEC standard [3], whose mathematical basis 
is discussed in [7], outlines a procedure for calculation of the 
influence of the neighboring cables on the rating of the cable 
of interest.  This procedure is a starting point for the 
developments presented in this paper and is summarized in 
Chapter II.  The procedure is iterative in nature considering 
one cable at the time and adjusting its rating based on the 
loading of the remaining cables in the group.  This way, a 
solution to the ampacity problem can be obtained, which 
although satisfactory, may not lead to the optimal cable 
utilization.  In order to find an optimal solution for the 
problem of loading of dissimilar cables an optimization 
problem is formulated in Chapter III.  Application of the 
algorithm is demonstrated in Chapter IV which contains also 
comparative studies of the proposed solution with that 
obtained using the method from the standards.  A summary 
section closes the presentation. 

RATING OF UNEQUALLY 
LOADED/DISSIMILAR CABLES 
This section presents an overview and the method of rating 
calculations described in the IEC Standard 60287. It will be a 
starting point to the developments presented in the following 
chapters. 

Cable rating equations  
Steady-state rating computations involve solving the 
equation for the ladder network with the thermal 
capacitances neglected [7].  The unknown quantity is either 
the conductor current I (A) or its operating temperature cθ  
(°C).  In the first case, the maximum operating conductor 
temperature is given, and in the second case, the conductor 
current is specified.  In this paper, our interest is in finding 
conductor current, hence the following rating equation will be 
used for the cable with n conductors [3]. 
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where 
c ambθ θ θ∆ = − , the latter representing ambient temperature. 

dW  (W/m) represents dielectric losses per unit length. 

1λ , 2λ  are the sheath and armor loss factors. 
R is the ac resistance per unit length of the conductor at 
maximum operating temperature (ohm/m). 

1 2 3 4, ,  and T T T T  are the thermal resistances where 1T  is the 
thermal resistance per unit length between one conductor 
and the sheath, 2T  is the thermal resistance per unit length 
of the bedding between sheath and armor, 3T  is the thermal 
resistance per unit length of the external serving of the 
cable, and 4T  is the thermal resistance per unit length 
between the cable surface and the surrounding medium, 
(Km/W). 
 
The expression for the external thermal resistance of an 
isolated cable is given by 

 ( )2
4 ln 1

2
sT u uρ
π

= + −  (2) 

where sρ  (Km/W) is the thermal resistivity of the soil and 
2 / eu L D=  with eD  = external diameter of the cable, (mm) 

and L = depth of burial of the centre of the cable, (mm). 

Standard treatment of unequally loaded 
cables 
The method suggested for the calculation for ratings of a 
group of cables set apart is to calculate the temperature rise 
at the surface of the cable under consideration caused by 
the other cables of the group, and to subtract this rise from 
the value of θ∆  used in the equation (1) for the rated 
current. An estimate of the power dissipated per unit length 
of each cable must be made beforehand, and this can be 
subsequently amended as a result of the calculation where it 
becomes necessary. 
 
The temperature rise kpθ∆  at the surface of the cable p 

produced by the power kW  watt per unit length dissipated in 
cable k is equal to 
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The distances of ' and pk pkd d  are measured from the centre 

of the pth cable to the centre of cable k, and the centre of the 
reflection of cable k in the ground-air surface, respectively 
(see Fig. 1).  Thus, the temperature rise pθ∆  above ambient 

at the surface of the pth cable, whose rating is being 
determined, caused by the power dissipated by the other (q-
1) cables in the group, is given by 
 1 2 ... ...p p p kp qpθ θ θ θ θ∆ = ∆ + ∆ + + ∆ + + ∆  (4) 

with the term ppθ∆  excluded from the summation. 

 
The value of θ∆  in (1) for the rated current is then reduced 
by the amount of pθ∆  and the rating of the pth cable is 

determined using a value of 4T  corresponding to an isolated 

cable at position p.  That is,  
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with all parameters in this equation pertaining to cable p. 

 

Fig. 1  Cables buried underground and their images 
with respect to the earth’s surface 

This calculation is performed for all cables in the group, and 
is repeated where necessary to avoid the possibility of 
overheating any of the cables. 
 
Let epθ  denote the external temperature of cable p in 

isolation.  Substituting (3) into the right-hand side of (4) and 
applying equation (2), the following general expression for 
the external thermal resistance of cable p is obtained: 
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 (6) 
When a group of identical, equally loaded cables is 
considered, the computations can be much simplified.  In 
this type of grouping, the rating of the group is determined 
by the ampacity of the hottest cable.  It is usually possible to 
decide from the configuration of the installation which cable 
will be the hottest, and to calculate the rating for this one.  In 
cases of difficulty, a further calculation for another cable may 
be necessary.  The method is to calculate a modified value 
of 4T  which takes into account the mutual heating of the 
group and to leave unaltered the value of θ∆  used in the 
rating equation (1). 

 
When the losses in the group of cables are equal, equation 
(6) simplifies to 
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There are (q-1) factors in square brackets, with the term 
'
pp

pp

d
d

 excluded. 

FORMULATION OF THE OPTIMIZATION 
PROBLEM 
This section describes the proposed solutions for optimal 
loading of dissimilar cables.  Let us consider the system of 
‘q’ cables.  Example of such system is shown in Fig. 2: 
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Fig. 2:   General system including ‘q’ cables. Some 
cables are equally loaded, some are unequally loaded 

and some have preset fixed currents. 

Let’s assume that the operating temperatures of the cables 
are 1 2, ,..., qθ θ θ  and the maximum allowed operating 

temperatures are 1max 2 max max, ,..., qθ θ θ . The conductors’ 

temperature rises above ambient temperature are 
1 2, ,..., qθ θ θ∆ ∆ ∆ , where i i ambθ θ θ∆ = − . Also, let’s assume 

that the cables are laid in a uniform medium; system of 
cables laid in a non uniform medium can be treated by 
modifying the value of 4T  [7]. By calculating the ampacities 
of a group of cables we are trying to find the maximum 
currents that can be carried by all cables without any of the 
cable temperatures exceeding its maximum allowed value. 
This may be expressed mathematically as an optimization 
problem as shown below. 
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where k is the number of circuits composed of single core 
cables per phase.  The last constraint states that the system 
is balanced. 
 
All constraints in (8) will now be modified to be expressed as 
functions of the currents.  For the cable p, we have 

maxp pθ θ≤  and therefore, maxp pθ θ∆ ≤ ∆ .  Thus, using (5), we 

can write  
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Expressing kW  in (3) in terms of the current kI  and then 
substituting (3) and (4) into (9), we obtain 
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In what follows we will rewrite the optimization problem (8) 
without the last equality constraint, which is understood to be 
enforced. The optimization problem (8) can now be rewritten 
as 
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In a matrix form this can be expressed as shown in (14). 
Solution to this optimization problem is discussed in the 
Appendix. 
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APPLICATION OF THE BARRIER METHOD 
The optimization problem (14) can be written in the following 
form: 

 0       
       0    1, ,i

Minimize f (x)
subject to f (x) i n≤ = …

 (15) 

where 1[ ,..., ]T
qx I I=  

First, we will need to check whether the problem is convex.  
The Hessian of the objective function is equal to: 

 2
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and is non-negative.  Therefore, the objective function is 
convex.  The Hessian of the ith  inequality constraint is given 
by 



Return to Session 
 

 

 

1

2

2 0 0

0
( )

0
20 0

i

i

i

in

i

c
d

f x

c
d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

∇ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"

% % #
# % %

#

 (17) 

First we observe that by definition ijc   is always positive.  

On the other hand, id  is also positive in spite of the 
subtraction in the numerator.  The reason for this is that the 
terms that are being subtracted represent the temperature 
increase in the conductor due to dielectric losses of the ith 
cable and the remaining cables in the same trench, which 
are in the order of a few degrees, usually very small values.  
Therefore, the Hessian above is non-negative. Thus, all 
inequality constraint functions are convex and the 
optimization problem (14) is convex. 
The optimization problem (14) is equivalent to the following 
one [10]  

 0
1

       
n

i
i

Minimize f (x) I (f (x))−
=

+∑  (18) 

The indicator function I_ is defined by 

 1ˆ ( ) log( )I u u
t− = − −  (19) 

where t > 0 is a parameter that sets the accuracy of the 
approximation. 
 
Î−  is convex and non-decreasing and takes on the value ∞  

for u > 0.  Î−  is also differentiable and closed.  As t 
increases the approximation becomes more accurate, as 
shown in the graph below [10]. 

 

Fig. 6:   Dashed line shows −I  whereas the solid lines 

show ˆ ( )I u−  for t = 0.5, 1, 2.  A larger value of t 
provides a better approximation. 

The function,  

 
1
log

n

i
i

( f (x))φ
=

= − −∑  (20) 

is called the logarithmic barrier for problem (18).  Its domain 
contains the set of values, x that satisfy the inequality 
constraints, ( ) 0if x ≤ , strictly, i.e. ( ) 0if x < . 
Therefore (18) becomes, 

 0
1       Minimize f (x)
t
φ⎛ ⎞+ ⎜ ⎟

⎝ ⎠
 (21) 

The algorithm used to solve this problem is described in the 
Appendix. 

COMPARATIVE STUDIES 
The numerical studies presented in this section will illustrate 
the efficacy of the proposed algorithm.  Two computational 
procedures will be used.  One, based on the IEC 60287 
iterative procedure method outlined in Section II and the 
other using the optimization algorithm presented in Section 
III.  Two different cable types will be used in this analysis as 
shown in Figure 3 and the computed parameters 
summarized in Table 1.   

(a) 

(b) 

Fig 3.  Cables considered in the numerical example. 
(a) 10 kV-300 mm2 single core, single point bonded 

circuit (b) 10 kV-300 mm2 three-core. The graphs 
obtained with a CYMCAP [8] program. 

Table 1  Computed parameters in the numerical 
example (non zero values shown) 

Computed 
parameter 

Single core 
cable 

Three core 
cable 

1 ( . / )T K m W  0.214 0.325 

2 ( . / )T K m W  0.109 0.042 

4 ( . / )T K m W * 0.751 0.637 

( / )R kmΩ  at 90 CD  0.0763 0.0790 

*The external thermal resistance is for a single circuit in 
isolation with the cable 1m underground, soil thermal 
resistivity of 1 Km/W and soil ambient temperature of 15°C. 
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We will consider a system composed of 3 circuits with 6 
cables as shown in Fig.4.  Cables 1 and 6 carry fixed 
currents of 200 A and 100 A, respectively. 

 

 

Fig. 5  Six cables with two circuits with fixed current. 

The results are summarized in Table 3. 

Table 3  Comparative results for dissimilar cables 

IEC Iterative approach Optimization 

Ampacity 
(A) 

Conductor 
Temperature 

( )oC  

Ampacity 
(A) 

Conductor 
Temperature 

( )oC  

1

2

3

4

5

6

200
564
564
564
527
100

I
I
I
I
I
I

=
=
=
=
=
=

 

1

2

3

4

5

6

56.3
77.0
72.0
81.1
90.0
53.4

θ
θ
θ
θ
θ
θ

=
=
=
=
=
=

 

1

2

3

4

5

6

200
667
667
667
405
100

I
I
I
I
I
I

=
=
=
=
=
=

 

1

2

3

4

5

6

59.6
88.0
83.2
90.0
74.7
54.3

θ
θ
θ
θ
θ
θ

=
=
=
=
=
=

 

Total 
2519 A  Total 

2705 A  

 
We can observe that, in this case, the optimization algorithm 
gives a total ampacity which is 186A (7.4%) greater than the 
total ampacity obtained with the IEC method.  Another 
interesting observation is that the ampacities of cables 2 to 5 
(cables with non fixed currents) are much closer to each 
other for the IEC case than for the optimization case.  
  
To test the accuracy of the algorithm presented here, a 
commercial optimization problem solver called KNITRO [9] 
was used to find the solution to the last optimization 
problem.  The same results were obtained with both 
algorithms. 

CONCLUSIONS 
This paper presented an optimization algorithm for the 
analysis of loading of dissimilar cables.  The proposed 
approach applies a Barrier Optimization method to solve an 
optimization problem with linear objective function and 
quadratic constraints.  Numerical results were obtained for 
two cases, one with identical, but unequally loaded cables, 
and the other with dissimilar cables.  In each case, the 
ampacity computed with the new algorithm was higher than 
the results obtained using an iterative approach. 
 

There is one additional advantage of the proposed method 
in comparison with the one recommended by the standards. 
 In the standard method the result depend on the selection 
of the starting cable or the reference cable and is fairly 
difficult to implement whereas the optimization formulation is 
clear and easy to program. 
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APPENDIX 
Algorithms for the Barrier Optimization Method 

Introduction 
We recall that the optimization problem we are solving is 
given by (21).  Since (21) is now obtained through 
approximating the indicator function I−  by Î−  then its 
solution will be an approximation to the solution of the 
original problem (15).  However, as t increases this 
approximate solution improves.  Newton’s method [10] will 
be used to solve (21).  Unfortunately for very large t, the 
objective function in (21) is difficult to minimize using the 
Newton’s method since its Hessian varies rapidly near the 
boundary of the feasible set.  This problem can be mitigated 
by solving a sequence of problems, each having the form of 
(21), starting with small t and increasing it at each step.  The 
solution at each step is used as the initial condition for the 
next step.  As t grows very large the approximate solution 
becomes very accurate [10]. 
 
This method of approximating the indicator function by a 
logarithmic barrier and solving the resulting optimization 
problem through a sequence of steps is called the barrier 
method [10].  
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Algorithms 
The algorithm for the barrier method is given below [10]. 
Given:  strictly feasible x, (0) , 1t t µ= > , tolerance 0outε >  

Repeat: 1. Compute the solution of 0
1 Minimize f (x)
t
φ⎛ ⎞+ ⎜ ⎟

⎝ ⎠
, 

*( )x t , starting at x , using the Newton’s method. 
2. Update *( )x x t=  
3. Stopping criterion: stop if / outn t ε<  
4. Increase .t tµ=  

Each iteration involving increasing t and resolving the 
problem is referred to as an outer iteration.  Each iteration 
within the Newton’s method is referred to as an inner 
iteration.  Since µ  is the factor by which t is increased, the 
choice of µ  will determine how many outer iterations there 
will be.  Based on experience with the algorithm a choice of 
this parameter that results in good convergence speed is 

50µ = , [11]. More details are given in the following sections. 
Barrier Method (Including Newton’s Method) Algorithm 
Newton’s method is used for finding the solution of (21)  at 
each step (or outer iteration) of the barrier method algorithm. 
Including the Newton’s algorithm in the barrier method gives 
the following algorithm. 

Given:  strictly feasible x, (0) , 1t t µ= > , tolerance 0outε >  

Repeat: 1. Compute the solution *( )x t  of (21) starting at 
x , using Newton’s method : 

Given: starting feasible point *x ,( xx =* ), tolerance 

0inε > , ( )10, , 0,1
2

α β⎛ ⎞∈ ∈⎜ ⎟
⎝ ⎠

. 

Repeat: a. Compute *x∆ by solving the matrix equation: 
 

 

*

2 * 2 * * * *
0 0

( )

1 1( ) ( ) ( ) ( )

r x

f x x x f x x
t t

φ φ⎡ ⎤ ⎡ ⎤⎡ ⎤∇ + ∇ ∆ = −∇ − ∇⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦�����	����

 

 b. Compute damping factor int  for updating *x : 

 ( )( ) ( ) ( )( )* * *

1

  1
in

in in

in in

t

while norm r x t x t norm r x

t t

α

β

=

+ ∆ ≥ − ⋅ ⋅

= ⋅

 

c. Update * * *
inx x t x= + ∆ . 

d. Stopping criterion: stop if ( )( )*
innorm r x ε≤ . 

  2. Update *( )x x t=  
  3. Stopping criterion: stop if / outn t ε<  
  4. Increase t tµ= ⋅  
In the above algorithm, the norm function is the Euclidean 
norm.  ∇  is the gradient operator and 2∇  is the Hessian 
operator.  x∆  is used in updating x .  The variation in x  
due to adding x∆  to it is dampened by the damping factor, 

int .  α  is used in the condition statement for finding a 

suitable int .  β  is the factor used in decreasing the value of 

int  to a suitable value.  Based on experience with the 
algorithm, good choices for α  and β  that result in suitable 
values for int  are 0.3 and 0.7, respectively. 

 
The resulting solution x  from the barrier method algorithm 
will be a very good approximate solution to the original 
optimization problem. 

Calculating Gradients and Hessians 
In step 1.a. in the above algorithm the vectors *

0 ( )f x∇  and 
*( )xφ∇  and matrices 2 *

0 ( )f x∇  and 2 *( )xφ∇  are needed in 

order to compute *x∆ .  The following shows how these 
vectors and matrices may be calculated for the optimization 
problem (21). 

The gradient of 0f (x)  evaluated at *x  is 2 *
0 ( )f x∇  and is 

given by: 

 
*

0 ( ) [ 1, 1,..., 1]tf x a∇ = − − −  (22) 

where 0 1 2( ) qf x I I I= − − − −… , and 1 2, ,...,
t

qx I I I⎡ ⎤= ⎣ ⎦ .` 

The gradient of ( )xφ  evaluated at *x  is *( )xφ∇  and is 
given by: 
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(23) 

 
The Hessian of 0 ( )f x  evaluated at *x  is 2 *

0 ( )f x∇ = 0 .  The 

Hessian of ( )xφ  evaluated at *x  is 2 *( )xφ∇  and is given by: 
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